Special conformal mappings in Approximation Theory

Peter Yuditskii

Johannes Kepler University, Austria

September 1, 2011
Two classical problems

Polynomials of least deviation from zero. Let $E' \subset \mathbb{R}$, and P_n a polynomial with minimal sup-norm $L_n = \|P_n\|_{E'}$ among all monic polynomials of degree $n < \text{card } E'$. Find P_n.

Spectra of periodic Jacobi matrices. A periodic Jacobi matrix J defines a bounded self-adjoint operator in ℓ^2

$$Je_k = p_k e_{k-1} + q_k e_k + p_{k+1} e_{k+1}, \quad p_k > 0, \; q_k \in \mathbb{R}.$$

Find spectrum of J.

Solutions. Let $\Pi_n = \Pi(h_1, h_2, \ldots, h_{n-1})$ be a region obtained from the half-strip by removing vertical intervals $\{-\pi k + it : 0 \leq t \leq h_k\}$.

There exists Π_n s.t.

$$P_n(z) = L_n \cos \Theta_n(z)$$

$$\sigma(J) = \Theta_n^{-1}([-\pi n, 0])$$
Examples: Extremal Polynomials & Entire Functions (EF)

Hayman’s Problem (A. Eremenko). For \(A = \cosh h > 1 \) find

\[
L(z) = \sup \left\{ |F(z)| : F \text{ is EFET} \leq 1, \ |F(x)| \leq \begin{cases}
1, & x < 0 \\
A, & x > 0
\end{cases} \right\}
\]

\[
\Theta(0) = 0-, \ \Theta(z) = z + \ldots, \quad L(x) = \cos \Theta(x), \quad 0 \leq x \leq a := \Theta^{-1}(ih).
\]
Examples: Green’s & Martin’s Functions

Proposition 1. Let \(\theta = \Theta/n \). Then \(\text{Im} \theta(z) = G(z, \infty, \bar{C} \setminus E) \), \(\text{Im} z > 0 \).

Proposition 2. A system of intervals \(E = [b_0, a_0] \setminus \cup (a_j, b_j) \) represents the spectrum of a periodic \(J \) iff \(\omega([b_k, a_{k+1}], \infty, \bar{C} \setminus E) \in \mathbb{Q} \).

Proposition 3. A compact \(E \) is regular in the sense of potential theory iff \(\Pi \) is obtained from the strip by making countably many cuts, such that \(h_k \to 0, k \to \infty \).

Example. \(E := \theta^{-1}([-\pi, 0]) \) corresponds to the Julia set of the quadratic polynomial \(T(z) = z^2 - \lambda \), \(\theta^{-1}(-\pi + 2ih_0) = -\lambda < -2 \)
\(\theta^{-1}(-\pi) = -\xi, \ \theta^{-1}(0) = \xi = T(\xi) \).
Examples: Green’s & Martin’s Functions

Proposition 1. Let $\theta = \Theta/n$. Then $\text{Im}\theta(z) = G(z, \infty, \mathbb{C} \setminus E)$, $\text{Im}z > 0$.

Proposition 2. A system of intervals $E = [b_0, a_0] \cup (a_j, b_j)$ represents the spectrum of a periodic J iff $\omega([b_k, a_{k+1}], \infty, \mathbb{C} \setminus E) \in \mathbb{Q}$.

Proposition 3. A compact E is regular in the sense of potential theory iff Π is obtained from the strip by making countably many cuts, such that $h_k \to 0, k \to \infty$.

Example. $E := \theta^{-1}([-\pi, 0])$ corresponds to the Julia set of the quadratic polynomial $T(z) = z^2 - \lambda$, $\theta^{-1}(-\pi + 2ih_0) = -\lambda < -2$, $\theta^{-1}(-\pi) = -\xi$, $\theta^{-1}(0) = \xi = T(\xi)$.

Proposition 4. A domain $\mathbb{C} \setminus E$ is of Parreau-Widom type iff $\sum h_k < \infty$.

Def. $\text{PW} = H^\infty(\alpha)$ contains a non-constant function for all $\alpha \in \pi^*_1(\mathbb{C} \setminus E)$.
Generalized Chebyshev Polynomials

\[P = \cos \Theta, \quad \Theta : \mathbb{H} \to \Pi(h_1, h_2, \ldots, h_{n-1}) \]

- Polynomials with real ±1 values.
- Collinear to polynomials with real and simple zeros, \(P = \pm L \cos \Theta \).

Theorem

For every finite sequence \(c_1, c_2, \ldots, c_{n-1} \) with the property \((-1)^k c_k \geq 1\) there exists \(P(z) = Cz^n + \ldots, \ C > 0, \) for which this (ordered!) sequence is the sequence of its (all) critical values. It is defined by this sequence up to a change \(z \mapsto az + b \) of independent variable, \(a > 0, \ b \in \mathbb{R} \).

Proof. \(c_k = P(x_k), \ P'(x_k) = 0, \ x_{k+1} < x_k. \ c_k = (-1)^k \cosh h_k. \)
Comb representation of LP (Laguerre-Pólya) polynomials

Def. LP-class is formed by real polynomials with all zeros real. We normalized such polynomial on a positive leading term.

Theorem

\[P \in \text{LP} \iff P = e^\phi, \text{ where } \phi : \mathbb{H} \to \Omega = \Omega(h_1, h_2, \ldots, h_{n-1}) \text{ is a conformal map onto a V-comb [Vinberg, 1989], } h_k \in [-\infty, \infty). \]

Corollary. LP-polynomial is uniquely defined by its sequence of critical values, \(c_k = (-1)^k e^{h_k} \), up to \(z \mapsto az + b \).
Example: uniform Jacobi polynomials

Let $\alpha, \beta \geq 0$ and let $J_n(x; \alpha, \beta) = x^n + \ldots$ denote the monic extremal polynomial on $[0, 1]$ with respect to the weight function $x^\alpha (1 - x)^\beta$.

Lemma. For nonnegative α, β and an integer n

$$x^\alpha (1 - x)^\beta J_n(x) = L_n e^\phi, \quad \phi : \mathbb{H} \to \Omega, \quad h_k = 0.$$
Example: uniform Jacobi polynomials

Let $\alpha, \beta \geq 0$ and let $J_n(x; \alpha, \beta) = x^n + \ldots$ denote the monic extremal polynomial on $[0, 1]$ with respect to the weight function $x^\alpha (1 - x)^\beta$.

Lemma. For nonnegative α, β and an integer n

$$x^\alpha (1 - x)^\beta J_n(x) = L_n e^{\phi}$, $\phi : \mathbb{H} \to \Omega$, $h_k = 0$.

Theorem (Moale-Peherstorfer)

A complex Chebyshev polynomial with the leading term $z_1^{k_1} \ldots z_d^{k_d} \bar{z}_1^{\ell_1}$ in the ball $\sum_{j=1}^d |z_j|^2 \leq 1$ is of the form

$$z_1^{k_1 - \ell_1} z_2^{k_2} \ldots z_d^{k_d} J_{\ell_1} \left(|z_1|^2; \frac{k_1 - \ell_1}{2}, \frac{k_2 + \ldots + k_d}{2} \right), \; k_1 \geq \ell_1.$$

Problem (W. Hayman, H. Stahl). For \(A > 1 \) and \(B > 1 \), find the polynomial \(P_n(x) \) of least deviation from \(\text{sgn}(x) \) on the union \([-A, -1] \cup [1, B] \) and the asymptotics for the error \(L_n = L_n(A, B) \).

Asymptotics for \(L_n \) is of the form

\[
L_n = \left(c + o(1) \right) n^{1/2} e^{-n \eta} \left| \vartheta_0 \left(\frac{1}{2} \left(\{ n \omega_1 + \omega_2 \} - \omega_2 \right) \tau \right) \right|,
\]

where \(\{ x \} \) denotes the fractional part of \(x \), the constants \(\tau, c, \eta, \omega_1, \omega_2 \) are given explicitly by means of elliptic integrals depending on \(A \) and \(B \), and

\[
\vartheta_0(v|\tau) = 1 - 2h \cos 2\pi v + 2h 4 \cos 4\pi v - 2h 9 \cos 6\pi v + \ldots,
\]

\(h = e^{\pi i \tau} \).

Problem (W. Hayman, H. Stahl). For $A > 1$ and $B > 1$, find the polynomial $P_n(x)$ of least deviation from $\text{sgn}(x)$ on the union $[-A, -1] \cup [1, B]$ and the asymptotics for the error $L_n = L_n(A, B)$.

Theorem (A. Eremenko, P. Yuditskii, J. Anal. Math., to appear) Asymptotics for L_n is of the form $L_n = (c + o(1))n^{-1/2}e^{-\eta|\theta_0(\frac{1}{2}(\{n\omega_1 + \omega_2\} - \omega_2)|\tau)}$, where $\{x\}$ denotes the fractional part of x, the constants $\tau, c, \eta, \omega_1, \omega_2$ are given explicitly by means of elliptic integrals depending on A and B, and \(\theta_0(v|\tau) = 1 - 2h\cos 2\pi v + 2h^2\cos 4\pi v - 2h^3\cos 6\pi v + \ldots, \) $h = e^{\pi i\tau}$.

P. Yuditskii (JKU)
• Doron Lubinsky, *Best Approximating Entire Functions of Exponential Type*, Third International Conference on Complex Analysis and Dynamical Systems, January 2–6, 2006, in Galilee, Israel.

• **Problem** (W. Hayman, H. Stahl). For \(A > 1 \) and \(B > 1 \), find the polynomial \(P_n(x) \) of least deviation from \(\text{sgn}(x) \) on the union \([-A, -1] \cup [1, B]\) and the asymptotics for the error \(L_n = L_n(A, B) \).

Problem (W. Hayman, H. Stahl). For \(A > 1 \) and \(B > 1 \), find the polynomial \(P_n(x) \) of least deviation from \(\text{sgn}(x) \) on the union \([−A, −1] \cup [1, B]\) and the asymptotics for the error \(L_n = L_n(A, B) \).

Asymptotics for \(L_n \) is of the form

\[
L_n = (c + o(1)) n^{-1/2} e^{-\eta n} \left| \frac{\vartheta_0 \left(\frac{1}{2} \left(\{n\omega_1 + \omega_2\} - \omega_2 \right) \mid \tau \right)}{\vartheta_0 \left(\frac{1}{2} \left(\{n\omega_1 + \omega_2\} + \omega_2 \right) \mid \tau \right)} \right|,
\]

where \(\{x\} \) denotes the fractional part of \(x \), the constants \(\tau, c, \eta, \omega_1, \omega_2 \) are given explicitly by means of elliptic integrals depending on \(A \) and \(B \), and

\[
\vartheta_0(v\mid \tau) = 1 - 2h \cos 2\pi v + 2h^4 \cos 4\pi v - 2h^9 \cos 6\pi v + \ldots, \quad h = e^{\pi i \tau}.
\]
Shape of the extremal function and MacLane’s Theorem

$sYgn(z; a)$: extremal EFET ≤ 1 for $\text{sgn}(x)$ on the set $\mathbb{R} \setminus (-a, a)$.

EF related to the Hayman problem (in MO), also has only 4 critical values: $\pm 1, \pm A$.
Shape of the extremal function and MacLane’s Theorem

Theorem (MacLane). For every up-down sequence \(\{ c_k \} \) there exists \(f \) with the only real critical values for which it is the critical sequence. Any two functions are related by \(f_1(z) = f_2(\alpha z + \beta) \).

Remarks.
1. \(f \in M \) (MacLane) \(\Rightarrow f' \in LP \). Thus the theorem shows that critical values of integrals of LP-functions can be arbitrary prescribed, subject to the evident restriction \((c_{k+1} - c_k)(c_k - c_{k-1}) \leq 0 \).
2. Since \(f \in LP \Rightarrow f' \in LP \). That is, \(LP \subset M \). Recall \(MO \subset LP \).
3. \(sYgn(z) \) one of the simplest function which belongs to \(M \), but not \(LP \). Due to MacLane’s theorem it is uniquely restored by its shape, \(L = L(a) \).
sYgn(z) as a special function

\[sYgn(z, a) = S(\sqrt{z^2 + a^2}) \]

Extremal polynomial via conformal mapping \(P_n(z) = S(\phi_n(z)) \)
Step 1
Step 2
Step 3
From an interval and a point to two symmetric intervals
Leading term in asymptotics

Renormalized domain

$$\alpha = \lim_{n \to \infty} \frac{\text{#alternance points on } [-A, -1]}{n}$$

Limit domain

$$\eta = \lim_{n \to \infty} \frac{a_n}{n}, \quad D_* = \lim_{k \to \infty} d_{nk}$$
Almost periodic "finite zone" multi-diagonal matrices: parametrization of spectral curves by branching divisors

\[\sigma_{c_1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ldots; \sigma_{c_1} \cdots \sigma_{c_\ell} = \sigma_{\infty}^{-1} \]
Almost periodic "finite zone" multi-diagonal matrices: parametrization of spectral curves by branching divisors

\[\sigma_{c_1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ldots; \quad \sigma_{c_1} \ldots \sigma_{c_\ell} = \sigma^{-1}_\infty \]
Almost periodic "finite zone" multi-diagonal matrices: parametrization of spectral curves by branching divisors

\[\sigma_{c_1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ldots; \quad \sigma_{c_1} \ldots \sigma_{c_\ell} = \sigma^{-1}_{\infty} \]
Almost periodic "finite zone" multi-diagonal matrices

\[z(b_{\infty_1} \ldots b_{\infty_m}) - \text{holo}, \quad n_1 + \cdots + n_m = n. \]

\[b = (b_{\infty_1}^{n_1} \ldots b_{\infty_m}^{n_m})^{1/n} \sim S, \quad z \sim J \]