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1 Saks spaces

Definition 1 A Saks space is a triple (E, || ||, τ), where

1. E is a vector space;

2. || || is a norm and τ eine locally convex topology;

3. τ is weaker than τ|| ||, but B|| || is τ -complete (and so closed).

Remark. Hence (E, || ||) is a Banach space.

Examples.

1. Let S be a T3 1
2
kR-space, (for example, if S is locally compact or metris-

able), E = C∞(S), || || = || ||∞, τ = τK (compact convergence).

2. (The original Example of Saks):

E = L∞(µ), where µ is a finite measure, || || = || ||∞, τ = τ|| ||1 (the
L1-Norm).

3. H∞(U) = {f : U → C : f holomorphic , bounded}, || || = || ||∞, τ is
the topology of compact convergence.

4. E = L(H) || || = the operator norm, τw the weak topology, τs the
strong topology.

Let (E, || ||, τ) be a Saks space. We define a locally convex topology
γ(|| ||, τ) on E as follows:

1. Let U be absolutely convex. Then U is a γ-neighbourhood of zero
⇔ U ∩ B is a neighbourhood of zero in (B, τB).

alternatively

2. Let U = (U\) be a sequence of τ -neighbourhoods of zero,

γ(U) :=

∞
⋃

n=1

(U1 ∩B + U2 ∩ 2B + · · ·+ Un ∩ nB).

Then the family of all such sets is a basis of γ-neighbourhoods of zero.

Proposition 1 1. τ ⊆ γ ⊆ τ|| ||

2. γ coincides with τ on || ||-bounded sets. Furthermore, γ is the finest
locally convex topology with this property.
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3. for suitable topologies τ, τ1 we have:

γ(|| ||, τ) = γ(|| ||, τ1)⇔ τ |B = τ1|B

4. B ⊆ E is || ||-bounded ⇔ B is γ-bounded

5. (E, γ) is complete

6. B ⊆ E is γ-compact ⇔ B is || ||-bounded and τ -compact

7. xn
γ→ x⇔ sup ||xn|| <∞ and xn

τ→ x

Duality: Let (E, || ||, τ) be a Saks space. Then E has three dual spaces:

E ′τ ⊆ E ′γ ⊆ E ′|| ||.

Then: E ′γ is the norm closure of E ′τ in E ′|| ||.

Examples. E = (L∞, , || ||∞, τL1), E ′τ = L∞, E ′γ = L1.

2 Constructions

Products of Banach spaces. Let En be a sequence of Banach spaces. We
can form three types of product:
∏

En – this is a Fréchet space with the product topology;
B
∏

En = {(xn) ∈
∏

En : sup ||xn||n <∞} —a Banach space;
S
∏

En = B
∏

En as vector space with the norm || || and the product
topology τ .

Now let {πn : En+1 → En} be a countable spectrum of Banach spaces,
where ||πn|| ≤ 1.

We have three projective limits as closed subspaces of the corresponding
products

LKR− →
←

limEn =
{

(xn) ∈
∏

En : πn(xn+1) = xn (n ∈ N)
}

.

This is a locally convex space.

B− →
←

limEn =

{

(xn) ∈ B
∏

En :
∧

n∈N

πn(xn+1) = xn

}

.

This is a Banach space.

S− →
←

limEn =
(

B− →
←

limEn

)
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as Saks space with the above norm and the product topology as τ .
For example let En = C[−n, n] and πn : En+1 → En be the restriction

mapping
LKR− →

←
limEn = C(R) with the topology of compacte convergence

B− →
←

limEn = (Cb(R), || ||∞)
S− →

←
limEn = (Cb(R), || ||∞, τK).

Proposition 2 Each Saks space has a representation S− →
←

limEα, where

{πβα : Eβ → Eα} is a projective spectrum of Banach spaces.

Examples. Let E = L(H), where H is separable (and so isometric to
ℓ2(N)).

En = {(ξ1 . . . ξn, 0 . . . )} ∼= Rn

Let πm,n : Em → En be the orthogonal projekcion (n < m).

n,m : En → Em the natural injection.
L(Em) is the space of m×m matrices.
Consider the mapping Πm,n : L(Em)→ L(En) (m < n), where

T 7→ πm,n ◦ T ◦ in,m

Then B− →
←

limL(En) = (L(H), || ||), S− →
←

limL(En) = (L(H), || ||, τw).
As examples of results which are valid for C(K)-spaces and have natural

generalisations to Saks spaces of the form C∞(S), we mention the following:

Proposition 3 (Stone Weierstraß). Let A ⊆ C∞(S) be a lattice with 1 ∈ A,
so that A separates the points of S. Then A is γ-dense.

Proposition 4 (Riesz) The dual space of (C∞(S), γ) is the space M t(S) of
bounded Radon measures on S.

Definition 2 A Saks algebra is a Saks space with a representation S− →
←

lim(Eα, τβα) as limit of a spectrum of Banach algebras, where πβα is multi-
plicative. (We shall always assume that our algebras are commutative with
unit).

If (A, || ||, τ) is a Saks algebra, then we define

Mγ(A) := {f : A→ C : foxmultiplicativeandγoxcontinuous}.

Mγ(A) is thus a subset of the Banach algebra spectrum M|| ||(A).
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Examples. For A = (C∞(S), || ||, τK) Mγ(A) = S.
We remark briefly that using these concepts one can get a satisfactory

extension of the classical Gelfand Naimark theor (which establishes the du-
ality between the class of compact spaces and that of the commutativen B∗

algebras with unit) to the class of completely regular spaces.
We have the following generalisation of the representation theorem of

Riesz:

Proposition 5 Let (E, || ||, τ) be a Saks space with B|| ||, τ -compact. Then
each γ-continuous operator T : C∞(S) → E has a representation T (f) =
∫

fdµ, where µ is a bounded E-valued measure on Bo (S).

Examples. If E is a Banach space, then one can regard E ′ as a Saks space,
namely as (E ′, || ||, σ(E ′, E)). This space hat compact unit ball.

Conversely, each Saks space F with compact unit ball has the form
F = (E ′, || ||, σ(E ′, E)) for a Banach space E. Such spaces can also bve
characterised as those Saks spaces with representations F = S− →

←
limFα,

where the Fα are finite dimensional.
Using this last remark we can prove the above result by using the rep-

resentation as a projective limit of finite dimensional case to reduce to the
classical Riesz representation quoted above.

Corollar 1 Let T : C(K) → E be weakly compact, (i.e. T (BC(K)) is rela-
tively σ(E,E ′)-compact) , where E is a Banach space. Then there exists a
Radon measure µ : Bo (K)→ E, so that T (f) =

∫

fdµ.

Sketch. We put B = (T (BC(K))) and consider the Saks space

(EB, || ||B, σ(E,E ′)).

This is a Saks space with compact unit ball. In this way one obtains a
representing measure which is weakly Radon. One then applies a theorem of
Pettis-type.

Proposition 6 (Orlicz-Pettis). Let (xn) be a sequence in a Banach space,
so that

∑∞
i=1 ǫixi is weakly convergent for each (ǫi) ∈ {−1, 1}N. Then

∑

xn
converges in the norm.

We now prove

Theorem 1 Eberlein-Smulian theorem. Let B ⊆ E be bounded. Then
the following statements are equivalent
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1. B ist weakly compact;

2. B is weakly σ-compact;

3. B is weakly sequentially compact.

For this we require some notions from the theory of integration for vector-
valued functions.

Definition 3 Let (Ω,A) be a set with a σ-algebra, E a Banach space. f :
Ω→ E is a measurable step function, if

f =

n
∑

k=1

lkχAk
,

where the Ak are measurable. f is measurable, ⇔ f =→
n
∞→ lim fn ((fn)

a sequence of measurable step functions).

This definition is equivalent to the fact that f(Ω) is separable and f−1(U) ∈
A (U open). Then the R-valued function ‖f‖ is measurable.

Definition 4 Let (Ω,A, µ) be aW -Maß. f : Ω→ E is Bochner-integrable:
⇔ f is measurable and

∫

||f ||dµ <∞.
This is equivalent to the fact that f is the pointwise limit of a sequence

fn of step functions so that lim
∫

fndµ exists.

In particular: if f is bounded and measurable⇒ f ist Bochner-integrable.

Proposition 7 Let f be Bochner integrable. Then {
∫

A
fdµ : A ∈ A} is

relatively compact in E.

Proof. Take ǫ > 0 and chose a step function g with
∫

||f − g||dµ < ǫ/2.
{
∫

A
gdµ : A ∈ A} is finitely dimensional and bounded (since g(Ω) is finite

dimensional). Then {
∫

A
fdµ : A ∈ A} is totally bounded.

We can now prove the Proposition of Orlicz-Pettis:
Proof. Let (xn) be a sequence so that

∑

ǫixi 7→ x(ǫi) for each (ǫi) ∈
{−1, 1}N.

Define f : {−1, 1}N → E with (ǫi) 7→ w − ∑∞i=1 ǫixi. f ist weakly
continuous and bounded. (This follows from the Principle of uniform bound-
edness). {−1, 1}N is a W -space. We can assume without loss of generality
that E = [xn] and so is separable. Hence f is Bochner integrable and so
f({−1, 1}N) = {∑ ǫixi} || ||-compact.
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Theorem 2 Krein-Milman theorem. Let B ⊆ E be weakly compact.
Then Γ(B) is also weak compact.

Proof.

1. Using the Eberlein smulian theorem, we can redue to the case where
E is separable.

2. We claim that Γ(K) = {
∫

Iddµ : µ ein W -Maß on K} – (
∫

Idµ is the
barycentre of µ).

Since Id is σ(E,E ′)−σ(E,E ′) continuous, it is weakly measurable and so || ||-
measurable (by the result of Pettis). Hence {

∫

K
Iddµ} σ(E,E ′) is compact.

Proposition 8 Let K be compact, A ⊆ (C(K), τp). If each sequence ∈ A
has a τp-cluster point, then A is τp-compact.

Proof. We consider A as a subset of (l∞(K), τp). We can assume without
loss of generality that A ⊆ Bl∞ (since A is weakly bounded and so || ||-
bounded). Bℓ∞ is τp-compact (by Tychonov’s theorem). Hence it suffices to

show that A ⊆ C(K).

3 Vector measures

Definition 5 Let (Ω,A) be a set witj σ-algebra, E a Banach space. A
finitely additive measure is a mapping µ : A → E , so that µ(∅) = 0,
µ(A ∪ B) = µ(A) + µ(B), (A,B ∈ A disjoint).

IF

µ

(

∞
⋃

n=1

An

)

=

∞
∑

n=1

µ(An),

(where (An) is a disjoint sequence of sets from A), then µ is σ-additive.

Examples.

1. Let T : L∞[0, 1]→ E continuous and linear. Then µ : A 7→ T (χA) is a
finitely additive measure. µ is σ-additive, if T is γ-continuous.

2. Suppose that T : L1[0, 1]→ E is continuous and linear. Then µ : A 7→
T (χA) is a σ-additive measure.
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Let µ : A → E be a measure. The variation of µ is

|µ| := sup

{

n
∑

i=1

||µ(Ai)|| : Ω =
n
⋃

i=1

Ai

}

If |µ| <∞, then µ is of bounded variation.

Examples. Let T : L1 → E be continuous and linear. Then |µ| <∞. For

n
∑

i=1

||µ(Ai)|| =
∑

||T (χAi
)|| ≤

∑

||T ||l(Ai) ≤ ||T ||.

The semivariation is

||µ|| := sup{|f ◦ µ| : f ∈ BE′}

N.B. ||µ|| ≤ |µ|.
Examples. The measure

µ : A → L∞[0, 1]

A 7→ χA

has bounded semivariation but not bounded variation.

Lemma 1 µ has bounded semivariation ⇔ {µ(A)|A ∈ A} is bounded in E.

Proof. This is an application of the principal of uniform boundedness.

Examples. Each T : L∞ → E induces a measure with bounded semivaria-
tion.

Examples. Let A = {A ⊆ N : |A| < ∞ ∨ |N \ A| < ∞}. This is a
σ-algebra.

Put
µ(A) = {|A||A| <∞|N \ A||N \ A| <∞

Then µ is σ-additive but not of bounded variation.
We quote the following result on vector valued measures:

Proposition 9 Let µ : A → E be a measure of bounded variation. Then µ
is σ-additive ⇔ |µ| σ-additive.
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4 Integration

Let µ : A → E be a measure, f =
∑n

i=1 αiχAi
a step function. Put

∫

fdµ :=
∑

αiµ(Ai).

Lemma 2 Let µ : A → E . Then

||µ|| = sup







||
n
∑

i=1

ǫiµ(Ai)|| : R =

\
⋃

〉=∞

A〉







and further

sup{||µ(A)|| : A ∈ A} ≤ ||µ||(R) ≤ △ sup{||µ(A)|| : A ∈ A}

If µ has bounded semivariation, then T : f 7→
∫

fdµ is continuous. For
when f is a step function in BL∞ then

||
∫

fdµ|| ≤ ||f ||∞||µ||

and we can extend T to a bounded operator T : L∞(A) → E . Hence
L(L∞(A), E) ∼=M⌊(A, E).

If ν is a W -Maß on A, then

L(L∞(ν), E) =M b
ν(A, E) = {µ ∈M⌊ : ν(A) = ′ ⇒ µ(A) = ′}

Definition 6 µ is a ν-absolutely continuous vector measure

⇔
∧

A∈A

ν(A) = 0⇒ µ(A) = 0.

This is equivalent to the condition

∧

ǫ>0

∨

¿. 0

∧

A∈A

ν(A) ≤ δ ⇒ ||µ(A)|| ≤ .

Proposition 10 (Bartle-Dunford-Schwartz). Let µ : A → E be σ-
additive (and so bounded). Then is {µ(A) : A ∈ A} is relatively σ(E,E ′)-
compact.
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Proof.

1. One uses the following result of James. Let E be a Banach space,
B ⊆ E bounded with the property

∧

f∈E′

∨

x0∈E

f(x0) = sup{f(x) : x ∈ B}.

Then B is σ(E,E ′)-compact.

2. One uses properties of (L∞, γ) and the fact that µ has a control measure
i.e. there is aW -Maß ν, so that µ is absolutely continuous with respect
to ν.

Proposition 11 Let T : L∞(µ) → F be linear. Then T is β-continuous
⇔ f ◦ T is continuous (f ∈ F ′).

This follows from the following property of the topology β.

Definition 7 Let E, F be two vector spaces, which are in duality. Then the
Mackey-topology τ(E, F ) is the finest locally convexe topology on E, which
is compatible with the duality.

Proposition 12 Let (E, τ) be a locally convex space so that τ = τ(E,E ′).
Then if T : E → F is a linear mapping with the property that f ◦ T is
continuous for each f ∈ F ′, then T is continuous.

In order to show that a given Saks space is a Mackey space (i.e. that γ
is the Mackey topology), one has to demonstrate that each σ(E ′γ, E) weak
compact set is γ-equicontinuous (i.e. that the converse of the roposition of
Alaoglu gilt).

For this we use the following characterisation

Proposition 13 Let (E, || ||, τ) be a Saks space. Then a bounded set H ⊆ E ′γ
is γ-equicontinuous ⇔ ∧

ǫ>0

∨

Hǫ⊆E′γ
, Hǫ τ -equicontinuous and H ⊆ Hǫ +

ǫB|| ||.

Examples. Let E = Cb(S). H ⊆Mt(S) is β-equicontinuous ⇔ H bounded
and

∧

ǫ>0

∨

K∈K(S)

∧

µ∈H |µ|(S \K) ≤ ǫ.

Proposition 14 Let S be locally compact and paracompact. Then (C∞(S), β)
is a Mackey space.
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(the proof uses partitions of unity).

Proposition 15 (L∞(µ), )
¯
is a Mackey space.

Proposition 16 (H∞(U), || ||, τK) is not a Macky space.
(H∞(U), || ||, τL1(∂U)) is a Mackey space.

Proposition 17 Let µ : A → E be a σ-additive measure. Then there exists
a W -measure ν : A → R so that

∧

A∈A

ν(A) = 0⇒ µ(A) = 0.

Corollar 2 Let µ : A → E be σ-additive. There exists a W -Maß ν, so that
Tµ : L∞(ν)→ E is continuous.

Corollar 3 µ : A → E σ-additiv. Dann ist {µ(A) : A ∈ A} relativ σ(E,E ′)
compact.

Corollar 4 Let A be a Boolean algebra, µ : A → E finitely additive, so that
for each f ∈ E ′, f ◦ µ is σ-additive. Then the following are equivalent

1. µ has a (norm-continuouse )σ-additive extension to a σ-algebra Ã ⊆ A;

2. {µ(A) : A ∈ A} is relatively weak-compact.

Proposition 18 Let T : L∞(ν) → E be β-continuous. Then µ : A → E is
σ-additiv, where

µ : A 7→ T (χA).

On the other hand, let µ : A → E be a vector-valued measure with control
measure ν. Then integration induces a β-continuous operator T : L∞(ν) →
E.

In order to show that T is β-continuous, we use the following property of
(L∞, β):

T : L∞ → Eoxiscontinuous⇔ f ◦ T ∈ (L∞)′ (f ∈ E ′).

This follows from the Radon-Nikodym theorem and the fact that (L∞, β)′ =
L1.

Proposition 19 Let S be a T31/2-space, µ : Bo (S) → E σ(E,E ′)-Radon,
i.e. f ◦ µ is Radon for each f ∈ E ′. Then µ is norm Radon.
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Proof of the extension theorem.
1⇒ 2 follows from the result of Bartle.
2 ⇒ 1: Let C = {µ(A) : A ∈ A}. This set is weakly compact. Then

B = Γ(C) is also weakly compact (Krein-Smulian). Consider the Saks space

(EB, || ||B, σ(E,E ′)).

Let Ã = be the σ-algebra generated by A. It has the representation

E =
E←−−−−

α→lim α

where the Eα are finite dimensional. Consider the diagram

A µ→ E πβ→ Eβ
πβα→ Eα.

πβ◦µ is σ-additive and so has an extension µ̃β. It follows from the uniqueness
of the extension that πβα ◦ µ̃β = µ̃α.

We define µ̃ on Ã by µ̃(A) := (µ̃β(A))β∈A. µ̃ is σ(E,E ′) σ-additive and
so || ||-additive (by the Theorem of Orlicz-Pettis).

Proposition 20 Let T : C(K) → E be continuous and linear. Then there
exists a representing measure µ : Bo (K) → E ′′, where µ is σ(E ′′, E ′)σ-
additive is (more precisely, a Radon measure with values in (E ′′, || ||, σ(E ′′, E ′)).
µ is || ||-bounded and σ(E ′′, E ′)-compact regular. Then

Tf =

∫

fdµ (f ∈ C(K)).

Proposition 21 Let T : C(K) → E be continuous, with representing mea-
sure µ : Bo (K)→ E ′′. then the following are equivalent

1. T is weakly compact.
2. µ takes its values in E.
3. µ is σ-additive with respect to the norm.

Theorem 3 Vitali-Hahn-Saks theorem. Let µn be a sequence of R-
valued measures on A, each of which is absolutely continuous with respect
to a W -measure ν. Let µn(A) be convergent for each A ∈ A. Then µ0 : A 7→
limn→∞ µn(A) is absolutely continuous with respect to ν. Let µn be a sequence
of σ-additive measures on A so that µn(A) converges for each A ∈ A. Then
µ0 : A 7→ limn→∞ µn(A) is σ-additive.
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We now sketch briefly how one can use the methods of Saks space theory
to obtain a series of connected results. We begin with a famous Proposition
of Rainwater:

Proposition 22 (Rainwater.) Let (xn) be a sequence in a Banach space

E. Then xn
σ(E,E′)→ x if and only if (xn) is bounded and f(xn)→ f(x) (f ∈

Ex (BE′).

This is proved using the

Theorem 4 Theorem of Choquet. Let E be a locally convex space, B ⊆
E metrisable, compact and convex. Then Ex (B) is a Gδ-set and each x ∈ B
is the barycentre of a W -measures µ on Ex (B) i.e. x =

∫

Id dµ.

Proof. We show how to deduce the result of Rainwater from Choquet’s
theorem. We can suppose that E is separable. Then B = BE′, σ(E

′, E))
satisfies the hypotheses. Hence we can embed E in C∞(Ex (BE′)). This is
an isometry (by the Krein-Milman theorem). For each x ∈ E is affine on BE′

and so assumes its supremum on an extreme point.
By Choquet’s theorem

(E, σ(E,E ′)) ⊆ (C∞(Ex (BE′), σ(C
∞, C∞

′

β ))

(E, σ(E,Ex(BE′))) ⊆ C∞(Ex (BE′), τp),

where each inclusion is an isomorphism.

We now use a version of the following characterisation of weak conver-
gence in C(K)-spaces:

Proposition 23 (Grothendieck.) Let xn be a sequence in C(K). Then

xn
σ(C(K),C(K)′→ x⇔ xn bounded and xn(t)→ x(t) (t ∈ K).

It is trivial to derive the following version for C∞(S)-spaces:

Proposition 24 Let xn be a sequence in C∞(S). Then

xn
σ(C∞(S),C∞(S)′′→ xx⇔ xnoxboundedandxn(t)→ x(t) (t ∈ S)

Proof of Rainwater’s We consider xn als a sequence in C∞(Ex (BE′))
and and use the generalised version of Grothendieck’s result.

14



In a similar manner one can prove the following Proposition:

Proposition 25 (Fremlin, Bourgain, Talagrand) Let B ⊆ E be bounded.
Then B is σ(E,E ′)-compact if and only if B is σ(E,ExBE′)-compact resp.
each sequence in B has a σ(E,ExBE′) cluster point.

Proof. Step 1: Using the classical Eberlein-Smulian theorem we can reduce
to the case where E is separable.

Step 2: If S is a suitable space (i.d. so that (C∞(S), β) is complete and
metrisable). Then a bounded subset B ⊆ C∞(S) is weakly compact ⇔ each
sequence xn ∈ B has a τp-cluster point.

Step 3: is as in the proof of Rainwater’s result.

4.1 Topologies on operator spaces

We now describe some natural topologies on operator spaces and discuss some
applications, in particular, a proof of the spectral theorem for unbounded self
adjoint operators, which uses the gneralised Riesz representation theorem.
Proof. Proof of the spectral theorem for bounded operators. Let
T be self-adjoint. We construct the functional calculus Φ : p 7→ p(T ) for
polynomials and show that Φ : Pol ([α, β]) ⊆ C[α, β] → L(H) is con-
tinuous. Φ can be extended to a continuous linear mapping C[α, β] →
L(H) = (L(H), || ||, τs). By the Riesz representation theorem there exists

µ : Bo ([α, β]) → L(H) with the property that Φ(f) =
∫ β

α
f(x)dµ(x). It is

then easy to obtain the classical formulation of the spectral theorem.

Examples. Show that µ(A) is an orthogonal projection for A ∈ Bo ([α, β]).
We mention briefly that one can extend this proof to the unbounded case

using Saks space method. Let T : H → H be a p.l.o. We construct a
functional calculus C∞(R)→ L(H) by means of the following Lemma:

Lemma 3 Let T : H → H be a s.a.p.l.o. Then there exists a sequence (Hn)
of closed subspaces so that

1. D(T ) ∩Hn = Hn and T (Hn) ⊆ Hn;

2. Hn ⊆ Hn+1 and
⋃∞
n=1Hn is dense in H.

The proof of the spectral theorem is then as above, whereby one uses the
following topologies on L(H).
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τw — the locally convex topology generated by the seminorms {px,y : T 7→
|(Tx|y)| : x, y ∈ H};

τs — generated by {px : T 7→ ||Tx||(x ∈ H)};
τ ∗s — generated by {px} and {p∗x}, where

p∗x : T 7→ ||T ∗x||.

These topologies are not complete. Hence we replace them by the corre-
sponding mixed topologies:

βσ = γ(|| ||, τw), βs = γ(|| ||, τs), βs∗ = γ(|| ||, τ ∗s ).

They are all complete. (N.B. sequential convergence is as for τw, τs, τs∗—this
follows form the principle of uniform boundedness.

When H is separable, then

H =
⋃

n∈N

Hn,

where dimHn = n and so

(L(H), || ||, τw) = S − limL(Hn)

(L(H), || ||, τs) = S − limL(Hn, H).

Definition 8 The space N(H) of nuclear operators is defined as follows:

N(H) = {T ∈ K(H) :
∑

n=1

ln(V T
∗T ) <∞}.

This coincides with the set of all T ∈ L(H), so that T has a faktorisation
T1.T2 with T1 and T2 Hilbert-Schmidt operators.

Then
(L(H), βσβsβs′′)

′ = N(H)

Further βσ = σ(L(H), N(H)) on BL(H).

Proposition 26 (Akemann) βs∗ is the Mackey-topology on L(H).
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5 Saks spaces

The object of study in this chapter are Banach spaces with a supplementary
structure in the form of an additional locally convex topology. The motiva-
tion lies in the interplay between certain mathematical objects (topological
spaces,measure spaces etc.) and suitable spaces of (complex-valued) func-
tions on them. These often have a natural Banach space structure. However,
by passing over from the original spaces to the associated Banach spaces, one
frequently loses crucial information on the underlying space. A good exam-
ple (which will be the subject of our most important application of mixed
topologies) is the Banach space C∞(S) of bounded, continuous, complex-
valued functions on a locally compact space S where it is impossible to re-
cover S from the Banach space structure of C∞(S) (in contrast to the case
of compact spaces S).

As we shall see, this situation can be saved by enriching the structure of
C∞(S) with the topology τK of uniform convergence on the compact subsets
of S. The class of spaces that we consider can be regarded as a generali-
sation of the class of Banach spaces (we can “enrich” a Banach space in a
trivial way, namely by adding its own topology). In fact these spaces can be
regarded as projective limits of certain spectra of Banach spaces with con-
tractive linking mappings (just as one can regard (complete) locally convex
spaces as projective limits of arbitrary spectra of Banach spaces) and we shall
lay particular emphasis on this fact for two reasons: for purely technical ones
and secondly because, in applications to function spaces, we shall constantly
use the fact that our function spaces are constructed out of simpler blocks
which correspond exactly to the members of a representing spectrum of Ba-
nach spaces. As an example, dual to the fact that one can consider a locally
compact space as being built up from its compact subspaces, we find that
one can construct the space C∞(S) from the spectrum defined by the spaces
{C(K)} as K runs through these subsets.

One of our main tools in the study of our enriched Banach spaces will
be a natural localy convex topology – the mixed topology of the title of this
chapter.

For the convenience of the reader, we now give a brief summary of this
chapter. In the first section, we give a basic treatment of generalised induc-
tive limits. Essentially, we consider a vector space with two locally convex
topologies which satisfy suitable compactibility conditions. We then intro-
duce in a natural way a “mixed topology” and this section is devoted to
relating its properties to those of the original topologies. However, a closer
examination of the definitions and results shows that, for one of the topolo-
gies, only the bounded sets are relevant. We have taken the consequences of
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this observation by replacing the topology by a “bornology”, that is, a suit-
able collection of sets which satisfy the properties which one would expect
of a family of bounded sets. We really only use the language of bornologies
and introduce explicitly all of the terms which we use. In section 2, we give a
list of examples spaces with mixed topologies. Some of these will be studied
detail (and more generality) in the following chapters. Other are introduced
to supply counter-examples. All are used to illustrate the ideas of the first
section. In section three, we define the class of enriched Banach spaces men-
tioned, restate the results of section 1 in the form that we shall require them
for applications and describe the usual methods for constructing new spaces
(subspaces, products, tensor products etc.). It is perhaps not inappropriate
to mention here that one of the main reasons for our emphasis on spaces with
two structures (a norm and a locally convex topology) rather that on locally
convex spaces of a rather curious type is the fact that it is important that
these constructions be carried out such a way that this double structure is
preserved.

6 Basic theory

As announced in the Introduction to this chapter, it is convenient for us to
use the language of bornologies.

Definition 9 Let E be a vector space. A Ball in E is an absolutely convex
subset of E which does not contain a nontrivial subspace. If B is a ball in
E, we write EB for the linear span

⋃∞
n=1 if B in E. Then

|| ||B : x→ inf{l > 0 : x ∈ lB}

is a norm on E. If (EB, || ||B) is a Banach space, B is a Banach ball.

Note that any absolutely convex, bounded subset of a locally convex
space is a ball. The following Lemma gives a sufficient (but not necessary)
condition for it to be a Banach ball.

Lemma 4 Let B be a bounded ball in a locally convex space (E, τ). Then if
B is sequentially complete for τ (and in particular if its is τ -complete), B is
a Banach ball.
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Proof. Let (xn) be a Cauchy sequence in (EB, || ||B). Then, since B is
bounded, (xn) is τ -Cauchy. Hence there is an x ∈ B so that xn → x for τ .
We show that ||xn−x||B → 0. If ǫ > 0, there is an N ∈ N so that (xm−xn)
belongs to ǫB form,nγN . Since B (and so also ǫB) is sequentioally complete
and so sequentioally closed, we can take the limit over n to deduce that xm−x
belongs to ǫB for m ≥ N .

Recall that if E is a vector spaces with a (convex) bornology B, then
a subset B of E is B-bounded if it is contained in some ball in B.

A basis for B is a subfamily B∞ of B so that each nB ∈? is a subset of
some B1 ∈ B∞.

(E,B) is complete if B has a basis consisting of Banach balls.
B is of countable type if B has a countable basis. If (E is a locally

convex space, then Bτ , the family of all τ -bounded, absolutely convex subsets
of E, is a bornology on E – the von Neumann bornology. In many of
our applications B will be the von Neumann bornology of a normed space
(E, || ||). This is of countable type (the family {nB|| ||}n∈N where B|| || is the
unit ball of E is a basis).

We now consider a vector space E with a locally convex topology τ and a
bornology B of countable type which are compatible in the following sense:
B ⊆ Bτ and B has a basis of τ -closed sets. Then we can choose a basis

(Bn) for B with the following properties:

(a) Bn +Bn ⊆ Bn+1 for each n;

(b) each Bn is τ -closed.

(If (Cn) is a countable baisis for B, we can define (Bn) inductively as follows:
take B1 = C1. Once B1, . . . , Bn have been chosed, we can find a τ -closed ball
in B which contains Bn + Bn + Cn=1. This is our Bn=1). Infuture, we shall
tacitly assume that a given basis (Bn) has the above properties.

Definition 10 We define the mixed locally convex structure γ = γ[B, τ ] as
follows:

Let U = (U\)∞\=∞ be a sequence of absolutely convex τ -neighbourhoods of
zero and write

γ(U) :=
∞
⋃

\=∞

(U∞ ∩ B∞ + · · ·+ U\ ∩ B\).

Then the set of all such γ(U) forms a base of neighbourhoods of zero for a
locally convex structure on E and we denote it by γ[B, τ ] (or simply by γ if
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no confusion is possible). In the case where B is the bornology defined by a
norm on E, we write γ[|| ||, τ ] for the structure γ[B, τ ].

The following Proposition gives a natural characterisation of γ.

Proposition 27 (i) γ is finer that τ ;

(ii) γ and τ coincide on the sets of B;

(iii) γ is the finest linear topology on E which coincides with τ on the sets
of B.

Proof.

(i) if U is a τ -neighbourhood of zero, then U ⊆ γ(Un) where Un := 2−nU .

(ii) if B ∈ B, we can choose a positive integer r so that B − B ⊆ Br. A
typical neighbourhood of the point x0 ∈ B for the topology induced by
γ on B has the form

B ∩ (x0 + γ(Un)).

Then Ur ∩ (B − B) ⊆ Ur ∩ Br ⊆ γ((Un)) and so

(x0 + Ur) ∩ B ⊆ (x0 + γ((Un)) ∩B.

(iii) let τ1 be a linear topology on E which coincides τ on the sets of B.
We show that γ is finer than τ1. W be a neighbourhood of zero for
τ1 and choose neighbourhood Wn of zero so that W0 = W and Wn +
Wn ⊆Wn−1 (n ≥ 1). There are τ -neighbourhoods (Un) of zero so that
Un ∩Bn ⊆Wn. Then, for any n

(U1 ∩ B1) + · · ·+ (Un ∩ Bn) ⊆W

and so y((Un)) ⊆ W .

Corollar 5 (i) γ is independent of the choice of basis (Bn);

(ii) if τ and τ1 are suitable locally convex topologies E (i.e. if τ and τ1
are compatible with B) then γ[B, τ ] = [γ[B, τ∞] if and only if τ and τ1
coincide on the sets of B.

The locallisation property of γ expressed in 27 implies that the continuity
of linear mappings is determined by their behaviour on the bounded sets of
E.
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Corollar 6 Let H be a family of linear mappings from E into a topologi-
cal vector space F . Then H is γ-equicontinuous if and only if H|B is τ -
equicontinuous for each B ∈ B. In particular, a linear mapping T from E
into F is continuous if and only if T |B is τ -continuous for each B ∈ B.
Proof. We must show that if W is a neighbourhood of zero in F , x a point
of B. We must find a neighbourhood U of zero in E so that T ((x+u)∩B) ⊆
Tx + V . We choose U (absolutely convex) so that T (B ∩ (U/2)) ⊆ V/2.
Then if y ∈ ((x+ U) ∩B), x− y ∈ B − B = 2B and the result follows from
the inclusion T (2B ∩ U) ⊆ V .

As we shall see later, the topology γ is, in the interesting cases, never
metrisable (or even bornological). However, it does, sometimes, have one
useful property in common with such spaces.

Proposition 28 Suppose that B has a basis of τ -metriesable sets. Then a
linear mapping from E into a topological vector space F is continuous if and
only if it is sequentially continuous.

Proof. For any B ∈ B, T |B is sequentially continuous and continuous. The
result then follows from 6.

In the following Proposition, we characterise certain properties (bound-
edness, compactness, convergence) with respect t γ directly in terms of B
and τ .

Proposition 29 A sequence (xn) in E converges to x (E, γ) if and only if
{xn} is B-bounded and xn → x in (E, τ).

Proof. We can suppose that x = 0. By 27 it suffices to that if xn → 0
in (E, τ), then {xn} is B-bounded. If t were false, we could find a sub-
sequence (xnk

) so that xnk
6∈ Bk. Since Bk is τ -closed, we can choose a

τ -neighbourhood of zero Uk so that xnk
6∈ Bk2Uk and we can suppose that

Uk + Uk ⊆ Uk−1 (k > 1). Then for each k > 1

γ((Un)) =

∞
⋃

n=1

(U1 ∩B1 + · · ·+ Un ∩Bn)

⊆
∞
⋃

p=1

(B1 + · · ·+ Bk−1 + Uk + · · ·+ Uk+p)

⊆ Bk + 2Uk.

21



Hence xnk
6∈ γ((Un)) for each k, which contradicts the fact that xn) is a

g-null-sequence.

Proposition 30 A subset B of E is γ-bounded if and only if it is B-bounded.

Proof. Suppose that B is B-bounded. Then B ⊆ Br for some r. Let (Un)
be a sequence of absolutely convex neighbourhoods of zero. Then there is a
K > 1 so that B ⊆ KUr. Hence

B ⊆ K(Ur ∩ Br) ⊆ Kγ((Un))

and so B is γ-bounded.

Now suppose that B is γ-bounded. If B were not B-bounded, we could
find a sequence (xn) in B so that xn 6∈ nBn for each positive integer n. Now
n−1xn → 0 in (E, γ) and so {n−1xn} is B-bounded – contradiction.

Proposition 31 A subset A of E is γ-compact (precompact, relatively com-
pact) if and only if it is B-bounded and τ -compact (precompact, relatively
compact).

Proof. This follows immediately from 30 and 27 (ii).

We recall that a locally convex space is semi-Montel if its bounded sets
are relatively compact. It isMontel if, in addition, it is barreled. In the next
Proposition, we characterise semi-Montel mixed spaces. As we shall se below,
non-trivial mixed topologies are never barrelled – and so never Montel.

Proposition 32 (E,γ) is semi-Montel if and only if B has a basis of τ -
compact sets.

Proof. This is a direct consequence of 1.12 and the definition.

We now consider the completeness fo (E, γ). It follows from completeness
theorem of RAIKOV which generalises KÖTHE’s completeness theorem that
(E, γ) is complete if and only if B has a basis of τ -complete sets. However,
this result is rather inaccessible and we shall give a proof based on duality
theorem later.

In the case where B is the bornology associated with a norm on E there
are three natural locally convex topologies τ , and τ|| ||, the norm topology,
on E and we discuss their distinctness. We first note that the equality τ = γ
means essentially that τ is already a mixed topology i.e. we have gained
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nothing by mixing. On the other hand, the condition γ = τ|| || means that
we are in the trivial situation (trivial “enriched” by its own topology (since
γ[|| ||, τ ] = γ[|| ||, τ|| ||]. The following result shows that if γ belongs to the
traditional classes of well-behaved locally convex spaces, then we have this
trivial situation.

Proposition 33 If γ is bornological (in particular, metrisable) or barrelled,
then γ = τ|| ||.
Proof. If γ is bornological, then the identity mapping from (E, γ) into
(E, || ||), being bounded 30, is continuous and so γ ⊆ τ|| ||. The converse
inequality is obvious. If γ is barrelled, then B|| ||, the unit ball of (E, || ||),
being a barrel in (E, γ), is a γ-neighbourhood of zero (we are assuming that
B|| || is τ -closed – strictly speaking, this need not to be the case. However, it
follows easily from the compatibility conditions that we can find an equivalent
norm so that this condition is satisfied).

The essential property of γ is given in 27 (iii). The neighbourhood ba-
sis used in the definition was chosen so that this would hold. However, in
applicaitons, we shall frequently require a much less obvious description of
γ-neighbourhoods of zero. Let U be as in 10 (except that it is now convenient
to index from zero to infinity) and put

γ̃(U) := U′ ∩
∞
⋃

\=∞

(U\ + B\).

Then the family of such sets forms a neighbourhood basis for a locally convex
topology on E which we denote by γ̃[B, τ ].
Proposition 34 γ̃[B, τ ] = γ[B, τ ].
Proof. Firstly, γ̃ is coarser than τ on each set Bk. For γ̃(U) ∩ B‖ =

(U′ ∩
⋂‖
\=∞(B\ + U\)) ∩ B‖ and this is a τ |Bk

-neighbourhood of zero. Hence

by 27 (iii), γ is finer that γ̃. Now we show that γ is coarser than γ̃. Let
γ((Un)) be a typical γ-neighbourhood of zero. There exists a decreasing
sequence (Vn)

∞
n=0 of τ -neighbourhood of zero so that γ̃((Vn)) ⊆ γ((Un)).

Choose x ∈ γ̃((Vn)). Then x ∈ V0 and, for each n, x has a decomposition
yn + zn where yn ∈ Bn, zn ∈ Vn. Define z1 := y1, xn := yn − yn−1 (n > 1).
Then

x1 + · · ·+ xn + zn = y1 + (y2 − y1) + · · ·+ (yn − yn−1) + zn = yn + zn = x

and zn−1 = xn + zn.
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We have xn = zn−1 − zn ∈ Vn−1 + Vn ⊆ Vn + Vn ⊆ Un+1 and

xn = yn − yn−1 ∈ Bn +Bn+1 ⊆ Bn+1.

Hence xn ∈ Un+1 ∩ Bn+1.
If n0 is so chosen that x ∈ Bn0 , then zn0 = x − yn0 ∈ Bn0. On the other

hand, zn0 ∈ Vn0 ⊆ Un0 + 2. Hence we have

x = x1 + · · ·+ xn + zn ∈ U2 ∩B2 + · · ·+ Un0+1 ∩Bn0+1 + Un0+2 ∩ Bn

⊆ γ((Un)).

Corollar 7 γ has a basis consisting of τ -closed sets.

Proof. If Un is an absolutely convex τ -neighbourhood of zero then

(2−1Un) +Bn ⊆ (2−1Un) +Bn ⊆ Un +Bn

and so γ̃((2−1Un)) ⊆ U0 ∩
⋂∞
n=1 ((2

−1Un) +Bn) ⊆ γ̃((Un)) and this implies
the result.

We now consider duality for (E, γ). E has three dual space

E ′τ – the dual of the locally convex space (E, τ);

E ′γ – the dual of the locally convex space (E, γ);

E ′B – the dual of the bornological space (E,B), that is the space
of linear forms on E which are bounded the sets of B.

Then E ′τ ⊆ E ′γ ⊆ E ′B and we regard each of these spaces as a cally
convex space with the topology of uniform vonvergence the τ -bounded sets
(resp. the γ-bounded sets, resp. the sets B. Since B is of countable type,
E ′B is metrisable and is also clearly complete (since the uniform limit of
bounded functions is bounded). Hence it is a Fréchet space. Our next result
characterise E ′γ and its equicontinuous subsets in terms of E ′τ and E ′B. Note
that this result is a special case of Grothendieck’s completeness theorem.

Proposition 35 • (i) E ′γ is a locally convex subspace of E ′B;

(ii) E ′γ is the closure of E ′τ in E ′B and so is a Fréchet space.
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Proof.

(i) follows directly from 30.

(ii) E ′γ is closed in E ′B since the limit of a sequnce in ′γ is continuous on the
sets of B and so is in E ′γ by 6. we show that E ′τ is dense in E ′γ . Let B
be a τ -closed ball in B and ǫ be a positive number. If f ∈ E ′ then there
is an absolutely convex τ -neighbourhood U of zero so that |f(x)| ≤ ǫ
if x ∈ B ∩ U i.e. f belongs to ǫ(B ∩ U)0 (polar in E∗, the algebraic
dual of E). Now the polar of B ∩ U is the closure of 1/2(B0 + U0) in
σ(E∗, E). But this set is closed since U0 is σ(E∗, E)-compact by the
theorem of ALAOGLU-BOURBAKI and so

(B ∩ U)0 ⊆ B0 + U0.

Hence f belongs to ǫ(U0+B0) and so there is a g belonging to ǫU0 ⊆ E ′τ
such that f − g belongs to ǫB0 i.e. |f(x)− g(x)| < ǫ if x ∈ B.

Corollar 8 Let τ1, τ2 be locally convex topologies on E which are compatible
with B and suppose that τ1 and τ2 have the same dual. Then γ[B, τ∞] and
γ[B, τ∈] have the same dual.

Proposition 36 A subset B of E is γ-weakly compact if and only if it is
B-bounded and σ[E,E ′τ ]-compact.

Proof. The condition is clearly necessary. It is sufficient since if B is B-
bounded then, regarded as a subset of the dual of E ′γ , it is equicontinuous and
so the weak topologies defined by E ′γ and its dense subspaces E ′τ coincide
on it.

Corollar 9 (E, γ) is semi-reflexive if and only if B has a basis of σ(E,E ′τ )-
compact sets.

Proposition 37 A subset H of E ′B is γ-equicontinuous if and only if it sat-
isfies the following condition:

For every strong neighbourhood U of zero in E ′γ, there is a τ -
equicontinuous set H1 in E ′τ so that

H ⊆ U +H1.
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Proof. Sufficiency: choose B ∈ B, ǫ > 0. It is sufficient t find a τ -
neighbourhood V of zero so that if x ∈ B ∩ V , f ∈? then |f(x)| ≤ ǫ. We
choose V so that

H ⊆ (ǫ/2)B0 + (ǫ/2)V 0 ⊆ ǫ(V ∩ B)0

(for the last inclusion, cf. the proof of 35 (ii)).
Necessity: suppose that H is γ-equicontinuous and U is a strong neigh-

bourhood of zero in E ′γ. We can suppose that U = B0
k for some positive

integer k. Then there is γ-neighbourhood of zero γ((Un)) so that

H ⊆ {γ((Un))}0 (U1 ∩B2 + · · ·+ Un ∩Bk)
0

(Uk ∩ Bk)
0 U0

k +B0
k.

Corollar 10 Let (xn) be a null-sequence in E ′γ. Then {xn} is γ-equicontinuous.

Proof. If U is a strong neighbourhood of zero in E ′B, then all but finitely
many of the elements of the sequence lie in U . Hence we can apply 37.

Corollar 11 Let A be a compact subset of E ′γ. Then A is γ-equicontinuous.

Proof. Since E ′γ is a Fréchet space, A is contained in the closed, absolutely
convex hull of a null sequence. By 10 the range of this sequence is equicon-
tinuous and hence so is its σ(E ′γ , E)-closed, absolutely convex hull and this
set contains A.

If (F, τ1) is a locally convex space and E is a subspace, there is a natural
vector space isomorphism between F ′/E0 and E ′ induced by the restriction
mapping from f ′ onto E ′. Since the latter mapping is continuous for the
strong topologies, the map from F ′/E0 onto E ′ is continuous. In general, it
is not a locally convex isomorphism. This is the case, however, when E has
a mixed topology.

Proposition 38 Let (E, γ) be a locally convex subspace (F, τ1). Then the
strong topology on F ′/E0 as the dual of (E, γ) coincides with the quotient of
the stron topology on?
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Proof. We show that the natural mapping from E ′γ onto F ′/E0 is contin-
uous. Since E ′γ is a Fréchet space, it suffices to show that every sequence
which converges to zero in E ′γ is bounded in F ′/E0. But such a sequence of
an equicontinuous set in (Hahn-Banach theorem). The image of such a set
in F ′/E0 is bounded.

Corollar 12 If, in addition, E is dense in F , then every bounded set in F
is containded in the closure of a bounded set in E.

Proof. By 38, the natural vector space isomorphism between the duals of
E and F is an isomorphism for the strong topologies and this is equivalent
to the statement of the Corollary (bipolar theorem).

As an immediate Corollary, we have

Proposition 39 The space (E, γ) is complete if and only if B has a basis of
τ -compact sets.

6.1 Examples

A. Let X be a completely regular space, S a collection of sets of X so
that ∪S is dense in X . We denote by C∞(?) the space of bounded,
continuous functions from X into C. Then

|| ||∞ : X → sup{|x(t)| : t ∈ X}

is a norm on C∞(X) and (C∞(X), || ||∞) is a Banach space. If A ⊆ X
then

pA : x→ sup{|x(t)| : t ∈ X}
is a seminorm on C∞(X) and we denote by τS the locally convex struc-
ture generated by {pA : A ∈ S}.
Then (C∞(X), || ||∞, τS) satisfies the conditions of ?? [1.3 ist durgestrichen]
and so we can form the mixed topology γ[|| ||∞, τS ] which we denote by
βS .

B. Let G be an open subset of the complex plane and denote by H∞(G)
the subspace of C∞(G) consisting of holomorphic functions. Then
(H∞(G), || ||∞, τK) (where K is the family of compact subsets of G
and || ||∞ and τK are defined as in D)?? satisfies the conditions of 1.3??
Wedenote the corresponding mixed topology by β.
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C. Let F be a Fréchet space, G a Banach space and denote by E the
space L(F,G) of continuous linear mappings from F into G. If B is a
bornology, we define on E the following structures:

B⌉∐⊓ – the bornology generated by the equicontinuous balls
in E;

τB – the topology of uniform convergence on the sets of B.

Then the conditions of 1.3 ?? are satisfied.

D. Let (Ω,Σ, µ) be a measure space i.e. Σ is a σ-algebra on the set Ω and
µ is a positive, σ-finite, n σ-additive measure on Σ. L∞(µ) denotes
the space of equivalence classes of µ-essentially bounded measurable
functions on Ω. We regard it as a Saks space with

a) the supremum norm || ||∞;
b) the topology τ1 defined by the seminorm

p1A : x→
∫

A

|x|dµ

where A runs through the family Σ0 of subsets of Σ of finite mea-
sure. (Sometimes it is convenient to consider a variant of this
situation where X is a locally compact space, Σ is the Borem al-
gebra of X and µ is a Radon measure. In this case the condition
that µ be σ-finite can be droppend).

E. Let F and G be Banach spaces and E be the space L(E, F ) of bounded
linear operators from E in F . On this space we consider the operator
norm || || and the weak resp. strong operator topologies τσ resp. τs
defined by the seminorms {pf,x : f ∈ G′, x ∈ E} resp. {px : x ∈ E}
where

pf,x : T → |f(Tx)| (f ∈ F ′, x ∈ E)
resp. px : T → ||Tx||.
If F = G = H (a Hilbert space) we also consider the strong∗ topology
τs∗ defined by the seminorms {px : x ∈ H} ∪ {p∗ : x ∈ H} where

p∗x : T → ||T ∗x||.

F. Let H be a Hilbert space, {Hα}α∈A a family of subspaces which is
directed on the right (i.e. is such that if Hα and Hβ are members of
the family, then there is a γ ∈ A so that Hγ contains Hα and Hβ) and
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has dense union. We consider the subspace E of L(H) consisting of
those operators TǫL(H) which are reduced by {Hα} i.e. are such that
T (Hα) is contained in Hα for each α. For such a T we define

pα(T ) = ||T |Hα||

L(H) is a Saks space with the uniform norm and the locally convex
topology defined by the {pα}.

7 Saks spaces

In this section we consider special types of spaces with mixed topologies
– those whose bornology is induced by a norm. We propose to call them
Saks spaces since they coincide essentially with the spaces indtroduced under
this name by ORLICZ (the precise relationship between these concepts is
discussed in the notes). We are concerned here with basic constructions
on Saks spaces. SInce these are based on the corresponding constructions
on Banach spaces (which they generalise), we recall the latter briefly (see
SEMADENI). The construction of subspaces and quotient spaces of normed
spaces is well-known. If {(Eα, || ||α)}α∈A is a family of normed spaces, we
define new normed spaces as follows: denote by E the Catersian product
∏

α∈AEα and define extend norms (i.e. taking on finite values)

|| ||1 : x = (xα) →
∑

α∈A

||xα||α

|| ||∞ : x(xα) → sup
α∈A
||xα||α

on E. Then if

E1 := (x ∈ E : ||x||1 <∞}
E∞ := {x ∈ E : ||x||∞ <∞}

(E1, || ||1) and (E∞, || ||∞) are normed spaces. They are Banach if (and only
if) each Eα is a Banach space. We write B

∑

α∈AEα and B
∏

α∈AEα for E1

and E∞ resp. They satisfy the universal property that one exect of a sum
and a product if we restrict attention to linear contractions.

If A is a directed set and

{πβα : Eβ → Eα, α ≤ β, α, β ∈ A}

(resp.
{iαβ : Eα → Eβ , α ≤ β, α, β ∈ A})
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is a projective spectrum (resp. an inductive spectrum) of normed spaces
(i.e. each πβα and each iαβ is a linear contraction with παα = IdEα (resp.
iαα = IdEα) for each α and, if α ≤ β ≤ γ, then πγα = πβα ◦ πγβ (resp.
iαγ = iβγ ◦ iαβ)), then we define the projective limit of the first spectrum as
the (closed) subspace

{(xα) ∈ B
∏

α∈A

Eα : πβα(xβ) = xα for α ≤ β}

and denote it by B − lim←− {Eα, πβα}. Similarly, the inductive limit B −
lim
←−
{Eα : iαβ} of the second spectrum is the quotient of B

∑

α∈AEα with
respect to the closed subspace generated by the elements (xγ− iβγ(xβ)) (β ≤
γ) (we are regarding each space Eβ as a subspace of B

∑

α∈AEα in the obvious
way). In fact we shall only require the following special representation of an
inductive limit: suppose that each Eα is a closed subspace of a given Banach
space F and that A is so ordered that α ≤ β if and only if Eα ⊆ Eβ (and then
iαβ is the natural injection): then the inductive limit is naturally identifiable
with the closure of

⋃

α∈AEα in F .

Lemma 5 Let (E, τ) be a locally convex space, || || a norm on E with unit
ball B|| ||. Then the following are equivalent:

(a) B|| || is τ -closed;

(b) || || is lower semi-continuous for τ ;

(c) || || = sup{p : p is a τ -continuous seminorm with p ≤ || ||}.

Proof. (c) ⇒ (b) and (b) ⇒ (a) follow immediately from the elementary
properties of semi-continuous functions.

(a) ⇒ (c): suppose x ∈ E with ||x|| > 1 i.e. x 6∈ B|| ||. We need only
find a continuous seminorm p on E so that p ≤ || || and p(x) > 1. By the
Hahn-Banach theorem, there is an f ∈ (E, τ)′ so that |f | ≤ 1 on B|| || and
f(x) > 1.

Definition 11 A Saks space is a triple (E, || ||, τ) where E is a vector
space, τ is a locally convex topology on E and || || is a norm on E so that B|| ||,
the unit ball of (E, || ||), is τ -bounded and satisfies one of the conditions of 5.
If (E, || ||, τ) and (F, || ||1, τ1) are Saks spaces, a morphism from E into F is
a linear norm contraction from E into F so that T ?By is τ − τ1-continuous.
A Saks space (E, || ||, τ) is complete if B|| || is τ -complete. Then (E, || ||) is
a Banach space 4.
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In constructing Saks spaces, one occasionally produces triples (E, || ||, τ)
where all but the last condition (closedness of B|| ||) is satisfied. This forces
us to take the following precaution: we define B1 := B̄|| || (closure in τ).
Then the Minkowski funcitonal || ||1 of B1 (as defined in 9) is a norm on E
so that (E, || ||1, τ) is a Saks space. The following Lemma ensures that we
do not lose any morphism in this proces.

Lemma 6 Let T be a linear mapping from E into a locall convex space F
so that T |B|| || is τ -continuous. Then T |B1 is τ -continuous.

Proof. By 5, it suffices to show that T |B1 is continuous at zero. Let U
be an absolutely convex neighbourhood of zero in F and choose an open
neighbourhood V of zero in E so that T (V ∩ B|| ||) ⊆ 1/2U . Then T (V ∩
V1) ⊆ U . For if x ∈ V ∩ B1 and we choose λ ∈]0, 1[ so that λx ∈ B|| ||,
then we can, by the continuity of T in B|| ||, find || || ∈ V ∩ B|| || so that
T (λx)− T (λy) ∈ λ/2U . Then

Tx = λ−1(T (λx)− T (λy)) + Ty ∈ U.

7.1 The associated topology

If (E, || ||, τ) is a Saks space, we can form the mixed topology γ[|| ||, τ ] – it
is called the associated locally convex topology of E. Then a morphism
between two Saks spaces is continuous for the associated topologies (27 and
6) and Saks space is a complete if and only if (E, γ) is a complete locally
convex space (39). We repeat that, despite these facts (and others to follow),
the relevant structure is that of a Saks space and not a locally convex space
(this is one of the reasons that we have been careful not ot forget the norms in
the definition of a morphism – thus a || ||-continuous linear mapping need not
be a morphism although it is, of course, a scalar multiple of one). Hence we
shall stubbornly persist in defining notions like completeness, compactness
etc. in terms of the structure as a Saks space even when these can be expresed
in terms of || || (using the theory of section 1).

7.2 Subspaces and quotient spaces

Let (E, || ||, τ) be a Saks space, F a vector subspace of E. Then if || ||f , τF de-
note the norm (resp. the locally convex topology) induced on F (F, || ||F , τF )
is a Saks space. There are examples which show that γ[|| ||F , τF ] need not
coincide with γ[|| ||, τ ]|F . If F is a γ-closed subspace, then we denote by
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F || || and F τ the structures induced on the quotient space E/F . The triple
(E/F,F || ||,F τ) need not be a Saks space since it can happen that the unit
ball of (E/F,F || ||,F τ) is not F τ -closed. However, by the process described
before Lemma 6, we can obtain a Saks space which we shall call the quotient
Saks space.

7.3 Completion

Let (E, || ||, τ) be a Saks space and denote by Êτ the complection of the
locally convex space (E, τ). We write B̂ for the closure of B|| || in Êτ and Ê

for the linear span of B̂ in Êτ . Then if || ||ˆ is the Minkowski functional of
B̂ and τ̂ is the locally convex structure induced on Ê from B̂τ , (Ê, || ||ˆ, τ̂) is
a complete Saks space. We call it the (Saks space)-completion of E. It
has the following universal property: for every morphism T from (E, || ||, τ)
into a complete Saks space (F, || ||m, τ1), there is a unique morphism T̂ from
(Ê, || ||ˆ, τ̂) into (F, || ||1, τ1) which extends T (for we can extend T firstly to
B̂ by uniform continuity and then to Ê by linearity).

As an example, consider the Saks space (E, || ||, σ(E,E ′)) where (E, || ||)
is a normed space. The completion of (E, σ(E,E ′)) is (E ′)∗ the algebraic
dual of E ′. The closure of B in (E ′) is its bipolar, i.e. the unit ball of E ′′,
the bidual of (E, || ||). Hence the completion of (E, || ||, σ(E,E)′) is E ′′, with
the Saks space structure described in 2.A (as the dual of E ′). THus we can
regard the bidual of a normed space as a completion in the sense of Saks
spaces.

7.4 Products and projective limits

Let {(Eα, || ||α, τα)}α∈A be a family of Saks spaces. We can give (E∞, || ||∞),
the normed space product of {Eα}, a Saks space structure by considering
on E∞ the topology τ∞¡ the product of {τα}. Then the unit ball B|| ||∞
of E∞ is the product

∏

α∈AB|| ||α and so is τ∞-closed. For the same rea-
son, (E∞, || ||∞, τ∞) is complete if and only if each (Eα, || ||α, τα) is. We
call (E∞, || ||∞, τ∞) the Saks space product of {Eα} and denote it by
S
∏

α∈AEα.
If {πβα : Eβ → Eα, α ≤ β, α, β ∈ A} is a projective system of Saks spaces

(so that the παβ ’s are Saks space morphism), we can define its (Saks space)
projective limit (E, || ||, τ) as follows: as in the first paragraph of this section,
we conside the space E of threads as a subspace of S

∏

α∈AEα and give it
the induced structure in the sense of 7.2. It can easily by checked that the
unit ball of E is τ∞-closed in S

∏

α∈AEα and so E is complete if each Eα is.
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We denote this projective limit by S − lim
←−
{Eα, πβα}. Sums and inductive

limits of Saks spaces can be defined without difficulty but we shall not require
them.

We recall that each Banach space can be regarded as a Saks space –
namely the Saks space (E, || ||, τ|| ||). The following result shows that the
Bananch spaces are in a certain sense dense in the Saks spaces and corre-
sponds to the fact that complete locally convex spaces are projective limits
of Banach spaces.

Proposition 40 A Saks space (E, || ||, τ) is coplete if and only if it is the
Saks space projective limit of a system of Banach spaces.

Proof. The sufficiency follows from the remarks above. Necessity: denote
by S the family of τ -continuous seminorms p on E which are majorised by
|| ||. Then S is a directed set with the natural (pointwise) ordering and
|| || = supS 5. If p ∈ S we denote by Êp the Banach space associated with p
(i.e. the completion of the space E/N[ where Np := {x ∈ E : p(x) = 0}, with
the norm induced by p). If p ≤ q, let pipq denote the natural contraction

from Êq into Êp. Then {πpq : Êq → Êp, p ≤ q} is a projection system of
Banach spaces and it is not difficult to show that (E, || ||, τ) is its projective
limit.

We remark that if (E, || ||, τ) is not complete, then the above construction
produces its completion in the sense of 7.3

As an example of a Saks space product, consider a family {Xα}α∈A of
locally compact spaces and let Sα be a family of susts of X as in ?. Denote
by X the topological sum of the spaces {Xα} and by S the family

⋃

α∈A Sα
(Xα is regarded as a subspace of X). Then the underlying vector space
of S

∏

α∈A C
∞(Xα) can be naturally indentified with C∞(X), || ||∞, τS) and

S
∏

α∈A C
∞(Xα). This example displays the suitability of a Saks space prod-

uct in a situation where any locally covex product is hopelessly inadequate.
If X is a locally compact space, then

{ρK1,K : C(K1)→ C(K), K,K1 ∈ K(X ),K ⊆ K∞)

(where C(K) denotes the space of continuous, complex-valued functions on
K and rhoK1,K is the restriction operator) is a projective spectrum of Banach
spaces and its Saks space projective limit is (C∞(X), || ||∞, τK).

Saks spaces which are projective limits of finite dimensional spaces will
play a role in the later chapters. They can be characterised as follows:
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Proposition 41 Let (E, || ||, τ) be a Saks space. Then the folllowing are
equivalent:

1. By is τ -compact;

2. E is the Saks space projective limit of finite dimensional Banach spaces;

3. E has the form (F ′, || ||, σ(F ′, F )) for some Banach space.

Then γ = τc(F
′, F ), the topology of uniform convergence on the compact

sets of E, is the finest topology on E which agree with τ on B|| ||. In fact,
if 1) is fullfilled, then E is naturally identifiable with S − lim −→

F∈F(E′)
where

F(E ′|| ||) denotes the family of finite dimensional subspaces of E ′γ.
Further, the following are equivalent:

1. B is τ -compact and metrisable;

2. E is the Saks space projective limit of a sequence of finite dimensional
Banach spaces;

3. E has the form (F ′, || ||, σ(F ′, F )) for a separable Banach space F ;

4. B|| || is τ -compact and normable (i.e. there is a norm || ||1 on E so
that τ = τ|| ||1 on B|| ||).

Proof. It is clear that if E has a representation as a projective limit of
finite dimensional space, then its unit ball is τ -compact. On the other hand,
if the latter condition is fulfilled, then (E, || ||) is semireflexive and so E is
the dual of the Banach space E ′γ . It is then clear that E is the Saks space
(E, || ||, σ(E,E ′γ)) and the rest of the proposition follows from standarddual-
ity arguments.

7.5 Duality

The dual of (E, || ||, τ) is defined to be the linear span of the set of morphism
from E into C i.e. it is the dual of the locally convex space (E, γ[|| ||, τ ])
which is just E ′γ . It is a Banach space. Suppose now that E is the Saks space
projective limit of the spectrum

{πβα : Eβ → Eα, α ≤ β, α, β ∈ A}

of Saks space. We assume, in addition, that πα(B|| ||) is τα-dense in B|| ||α
for each α (πα is the natural morphism from E into Eα). This condition is
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satisfied, for example, by the canonical representation of E 40. Then each
(Eα)

′ can be regarded as a Banach subspace of (E, || ||)′ and the natural
injection iαβ from (Eα)

′
γ into Eβ)

′
γ (a ≤ β) is the transpose of παβ .

Proposition 42 (a) E ′γ is the Banach space inductive limit of the spec-
trum

{iαβ : (Eα)
′
γ → (Eβ)

′
γ, α ≤ β, α, β ∈ A}.

(b) A subset H of (E, || ||)′ is γ-equicontinuous if and only if there is a
sequence (αn) with values in A and, foreach n ∈ N, a subset Hn of
(E, || ||)′ so that

(i) Hn is ταn-equicontinuous;

(ii) ′′sumn sup{||f || : f ∈ Hn} <∞;

(iii) H ⊆∑Hn (i.e. if f ∈ H, f =
∑∞

n=1 fn where fn ∈ Hn).

Proof.

(a) By a standard result on the duals of locally convex projective limits,
the dual of (E, τ) is the subspace

⋃

α∈A(Eα, τα)
′ of (E, || ||)′. Hence

by 35 (ii) and the remarks at the beginning of this section, E ′γ is the
inductive limit of the Banach space {(Eα)′γ}.

b) We note firstly that if H ′ is a τ -equicontinuous subset of E ′ then there
is an α ∈ A so that H ′ ⊆ E ′α and H ′ is τα-equicontinuous. The suf-
ficiency of the condition follows then from 37. On tyeh other hand, if
H is γ-equicontinuous then there are α0, α1 in A(α0 < α1) and H0τα0-
equicontinuous in E ′ (resp. H1 τα1-equicontinuous is E

′) so that

H ⊆ H0 +
ǫ

2
B, H ⊆ H +

ǫ

2
B

(ǫ > 1, B the unit ball of E ′). Then if h ∈ H , it has a representations

h0 +
ǫ

2
b0; h1 +

ǫ

2
b1 (h0 ∈ H0, h1 ∈ H1, b0, b1 ∈ B).

Then h = h0 + (h1 − h0) + ǫ
2
b0 and ||h − 1 − H0|| ≤ ǫ. We define H1

to be the set of all such (h0−h1) required in the representations of the
elements of H . Continuing inductively, we can construct a sequence
(Hn) with the required properties.
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7.6 Co-Saks space

It will be convenient to introduce an intrinsic definition of those spaces which
are duals of Saks spaces. We define a Co-Saks space to be a vector space
E with the following structures:

a) a norm || ||;

• a convex bornology B consisting of || ||-bounded sets;

c) a locally convex topology σ on E for which B|| || is closed and each
B ∈ B is relatively compact.

In addition, we assume that the following compatibility condition holds.

d) if C ⊆ E is an absolutely convex set so that for each ǫ > 0, there is a
B ∈ B with C ⊆ B + ǫB|| ||, then C ∈ B.

The following are examples of Co-Saks spaces:

I. The dual E ′γ of a Saks spae is a Co-Saks space when we choose for B the
family of γ-equicontinuous subsets and for σ the topology σ(E ′γ , E).

II. If S is a completely regular space, we define a Co-Saks structure on
C∞(S) as follows:

|| || is the supremum norm;

B is the family of uniformly bounded, equicontinuous subsets
of C∞(S);

σ is the topology of pointwise convergence on S.

III. We can generalise II as follows: let S be a uniform space and denote
by U∞(S) the space of bounded, uniformly continuous functions on S.
We can define a Co-Saks structure on S as above (replacing “equicon-
tinuous” by “uniformly equicontinuous”). If S is a completely regular
space and we ragard it as a uniform space with the fine uniformity
(i.e. the finest uniform structure compatible with the topology), then
C∞(S) = U∞(S) and the Co-Saks structures defined in II and III co-
incide.

7.7 Duality for Co-Saks spaces

If (E , || ||,B, σ) and (F , || ||∞,B∞, σ∞) are Co-Saks spaces then the linear
mapping T : E → F is a (Co-Saks)-morphism if
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a) it is || || − || ||1 bounded;

b) it is B − B∞ bounded;

c) the restrictions of T to sets B ∈ B are σ − σ1 continuous.

This is equivalent to the fact hat T is σ̃− σ̃1 continuous where σ̃ is the finest
locally convex topology on E which coincides with σ on the set of B – and
σ̃1 is defined on F in the corresponding way.

The dual E ′ of a Co-Saks space is the space of all morphisms f : E → C.
It has a natural Saks space structure (E ′, || ||, τ) where y is the norm dual to
y on E and τ is the topology of uniform convergence on the sets of B. The
definition of the norm on E ′ is justified by the following Lemma:

Lemma 7 Let f be a linear functional on the Co-Saks spece (E , || ||,B). Then
f is norm-bounded (and so an element of E ′) provided f |B is σ|B-continuous
for each B ∈ B.
Proof. If f were not bounded on B|| ||, we could find a sequence (xn)
in B|| || so that |f(xn)|γn2. Now {xn/n} is in B by 7.6 d) and hence f is
bounded on this set – contradiction.

It follows now from standard duality theory for locally convex space that
there is a complete duality between Co-Saks spaces and complete Saks space.
The dual of one type of space is a member of the dual class and the natural
mapping of a Saks (Co-Saks) space into its bidual is an isomorphism. The
following result will be useful later when we study uniform measures.

Proposition 43 Let (E, || ||, τ) be a complete Saks space, γ = γ[|| ||, τ ] the
associated mixed topology. Consider the dual Co-Saks space (E , || ||,̃B, σ) and
write B for the bornology of τ -equicontinuous sets on E , respectively σ̃ for the
finest locally convex topology on E , which agrees with σ on the set of B̃. Then
the following conditions are equivalent for a subset H of E :

a) H is σ̃-equicontinuous;

b) H is σ̃-equicontinuous on the sets of B̃;

c) H is norm-bounded and σ̃-equicontinuous on the sets of B;

d) H relatively γ-compact (resp. γ-precompact);

e) H is norm-bounded and τ -precompact.

This follows from previous results, standard duality theory and Ascoli’s
theorem on relatively compactness in C(K)-spaces.
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7.8 The Hom functor

If E is a Banach space and (F, || ||, τ) is a Saks space, then we denote by
Hom (E, F ) the set of || ||γ continuous linear operators from E into F . Note
that as a vector space, this coincides with the space of norm-bounded linear
operators from E into F . We regard Hom (E, F ) as a Saks space with the
supremum norm and the topology τp of pointwise convergence (with respect
to τ) on E. Note that on the unit ball of Hom (E, F ), this topology coincides
with that of compact convergence, resp. of pointwise convergence on a dense
subspace of E. The next result is an easy consequence:

Proposition 44 1. If {Eα} is an inductive system of Banach spaces and
F is a complete Saks space, then there is a natural isomorphism between
the Saks spaces

Hom(B − α and S − lim
←−α

Hom(Eα, F ).

In particular, if E is a Banach space

Hom(E, F ) = Hom((B − lim
−→

GǫF(E)

G), F ) = S lim
−→

GǫF(E)

)G,F )

(F(E) is the directed family of finite-dimensional subspaces of E).

2. If {Fα} is a projective system of Banach spaces, E a Banach space,
then there is a natural isomorphisms between the Saks spaces

Hom(E, F ) = Hom(E, S − lim
−→

GǫF(F′γ )

G′) = S − lim
−→

GǫF(E)

Hom(E,G′).

7.9 Tensor products

Let (E, || ||, τ) and (F, || ||1, τ1) be Saks spaces. We denote by E ⊗ F the
algebraic tensor product of E and F . On E ⊗ F we consider the following
structures:

|| ||⊗: x→ sup{|(f ⊗ g)(x)| : fBE ′τ , }BF ′τ∞}

τ ˆ̂⊗ τ1: the projective tensor product of τ and τ1;

τ ˆ̂⊗ τ1: the inductive tensor product of τ and τ1.

Then (E⊗F, || ||⊗, τ⊗̂τ−1) and (E⊗F, || ||⊗, τ ˆ̂⊗τ1) are Saks spaces (this
follows from 5 since |f⊗g| is continuous for τ ˆ̂⊗τ−1 and τ ˆ̂⊗τ−1. We denote

38



their completions by projective limits, we can give another construction of

the tensor product E ˆ̂⊗γ F : let

πqp : Êq → Êp : p, qǫS, p ≤ q}
and

πq1p1 : Êq1 → Êp1 : p1, q1ǫS1, p1 ≤ q1}
be canonical representations of the completions of E and F . Then

{πqp ⊗ πq1p1 : Eq ˆ̂⊗ Fq1 → Ep
ˆ̂⊗ Ep1; p ≤ q, p1 ≤ q1}

is a projective spectrum of Banach spaces and its projective limit is naturally

isomorphic to (E ˆ̂⊗γ F, || ||, τ ˆ̂⊗ τ2).
We consider some results on operators between Saks spaces.

Proposition 45 Let (E, || ||, τ) and (F, || ||1, τ − 1) be Saks spaces, whereby
(F, || ||1) is a Banach space. Then a linear operator T : E → F maps a γ-
neighbourhood of zero in E into a relatively (weakly) compact subset of (F, γ)
if and only if T maps bounded sets into relatively (weakly) compact sets and
is || || − y continuous.

Proof. The condition is clearly necessary. Suppose then that there is an
absolutely convex γ-neighbourhood U of zero so that T (U) ⊂ BF . Hence if
Bk(E) := kBE , we define

Ũ = bigcupn=1

n
∑

k=1

(2−kU ∩ Bk(E)).

Then Ũ is a γ-neighbourhood of zero and its immage under T is relatively
(weakly) compact. For

T ()̃ =
⋃

n=1

n
∑

k=1

T (2−kU ∩BK(E))

⊂
n
∑

k=1

(T (2−kU ∩ BK(E)) +
l
⋃

k=n+1

T (2−kU)

⊂
n
∑

k=1

T (2−kU ∩ BK(E)) +B2 − n(F )

for each n. Since the first term is relatively (weakly) compact,the result
follows from a well-known criterium for weak compactness resp. its analogue
for norm compactness.
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At this point we recall a result on the factorisation of weakly compact
operators:

Proposition 46 Let E and F be Banach spaces, T : E → F a weakly cmpact
linear operator. Then there are a reflexive Banach space G and contiuous
linear operators S : G→ F and R : E → G so that T = SR. If T is compact,
we can find G,R, S with the additional properties that G is separable and R
and S are compact.

This follows from the following lemma:

Lemma 8 Let E be a Banach space and W a weakly compact, absolutely
convex subsets. Then there exists a weakly compact, absolutely convex subset
C of E which contains W and is such the associated normed space (EC , || ||C)
is reflexive. If W is norm compact, then one may construct C so that W
compact in (EC , || ||C), C is compact in E and (EC , || ||C) is a separable,
reflexive Banach space.

Proof. Denote by B the unit ball of E and put Wn := 2nK + n−1B. Then
Wn is a closed, absolutely convex subset of E¿ Let || ||n be the Minkowski
funcitonal of Wn and write En for E, regarded as a normed space with this
norm. Since it is equivalent to the original norm, En is a Banach space. Now
if

C :=

{

x ∈ E :

∞
∑

n=1

||x||2n ≤ 1

}

,

then C is a closed, absolutely convex subset of E and a simple calculation
shows that K is contained in C while the latter si a subet of 2nK + n−1B
for each n and so is weakly compact by a standard characterisation of weak
compactness. We show that σ(E,E ′) and σ(EC , E

′
C) coincide on C and this

will conclude the first part. Note that the diagonal mapping x→ (x, x, . . . )
is an isometric embedding from EC onto a closed subspace of the ℓ2-sum

ℓ2(En) =

{

x = (xn) ∈
∞
∏

n=1

En :
∑

n

||xn||2n <∞
}

.

The dual of ℓ2(En) is ℓ2(E ′n) (proof exactly as for the duality of ℓ2) and so
it suffices to show that σ(ℓ2(En), ℓ

2(E ′n)) coincides with σ(E,E
′) on C. But

the former agreees ont the bounded set C with the weak topology induced
by the dence subspace of ℓ2(E ′n) consisting of the sequence with only finitely
many non-zero elements which implies the result.
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Now we turn to the second part. If K is a norm-compact, then so is C
since it is clearly totally bounded.

We now show that K is compact in EC . It will suffice to show that it
is precompact. Let ǫ > 0 – we shall find an ǫ-net for K with respect to
|| ||C. First note that if xǫD then ||xn| ≤ 2−n. Hence there is an N > 0 so
that (

∑∞
n=N+1 ||x||2n) ≤ ǫ2/8 for each xǫK. Now the norm (

∑N
n=1 || · ||2n)1/2

is equivalent to || || and so there is a finite set {x1, . . . , xk} in K so that for
each xǫK there is an i with (

∑N
n=1 ||x− xi||2n) ≤ ǫ2/2.

Then we have ||x− xi||C ≤ ǫ.
To show that (EC , || ||C) is separable, note that since C is norm compact,

the nrom topology agrees with σ(E,E ′) on C and so the latter is metrisable.
However, as we know, σ(E,E; ) agrees with σ(EC , E

′
C) on C and so the latter

is also metrisable. From this it follows that (EC , || ||C) is separable.

Proposition 47 Let (E, || ||, τ) be a Saks space, (F, τ̃) a Locally convex
space, T : E → F γ-continuous and linear. Then

1. T takes bounded sets into relatively compact sets if and only if T fac-
torises as follows

where (G, || ||1, τ1) is a Saks space with τ1-compact unit ball R : E → G
is γ − γ-continuous (and so takes bounded sets into relatively compact
sets) and S : G→ F is γ − τ̃ continuous. If F is a Banach space with
the weak topology, we can assume that (G, || ||1) is reflexive and τ−1 =
σ(G,G′) while if it is a Banach space with the norm topology, we can
assume that (G, || ||1) is a separable and reflexive, with τ−1 = σ(G,G′)
(so that the unit ball of G is τ − 1-compact and metrisable).

2. T is γ-compact if and only if it has a factorisation as in the diagram
whereby R is γ − || ||1 continuous.

Proof. The necessity of the condition is clear. We prove the sufficiency.
Let C be the closure of the image of the unit ball under T . Then

(EC , || ||C, τ |EC
)

is the required space. S is simply T regarded as a mapping into FC and S is
the injection from FC into F .

Now if F is a Banach space with the weak topology, then T is weakly
compact as a mapping from the normed space E into the normed space F .
Hence by the factorisation theorem, there is a ball B1 which contains T (B)
in F and is such that the corresponding normed space EB1 is reflexive. Then
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if we put G := EB1 , τ and σ(G,G′) coincide on B1 by compactness and so
we can complete the proof as above.

If F is a Banach space with the norm topology, then we can proceed as
above but, using the factorisation theorem for compact operators, we can
assume that B1 is norm compact.

2. ⇐ is clear for then R is γ-compact by 45 and hence so is T .
⇒: Suppose that T is γ-compact. Then there is an absolutely convex γ-

neigbourhood V of zero so that C1 = T (V ) is τ̃ -compact. We can construct
G as above, using C1 as the unit ball. Then R is γ-compact as it sends V
into a compact set in (G, γ).

We finish this section with some brief comments on spaces which gener-
alise the class of Banach algebras (resp. C∗-algebras) exactly as the Saks
spaces generalise the class of Banach spaces.

Definition 12 Let A be an algebra with unit e. A submultiplicative semi-
norm on A is a seminorm p with the properties p(xy) ≤ p(x)p(y) (x, y ∈ A)
and p(e) = 1. If A has an involution x → x∗, p is a C∗-seminorm if, in
addition, it satisfies the condition p(X∗x) = {p(x)}2 (x ∈ A). A Saks alge-
bra is a triple (A, || ||, τ) where (A, || ||) is a Banach algebra with unit and
the locally convex topology can ve defined by a family S of submultiplicative
seminorms so that || || = supS. A Saks C∗-algebra is defined in exactly
the same way with the additional requirements that A have an involution and
the seminorms of S be C∗-seminorms. It follows from this condition that
(A, || ||) is then a C∗-algebra.

If p is a submultiplicative seminorm, then Âp (as defined in the proof of
40 has a natural Banach algebra structure. Hence a Saks algebra A has a
canonical representation as a projective limit of spectrum

{πqp : Âq → Âp, p ≤ q, p, q ∈ S}

where each Âp is a Banach algebra and the linking mappings are unit-preserving
homomorhisms. Similarly, a Saks C∗-algebra has a representation with C∗-
algebras as components and C∗-algebra homomorhisms as linking mappings.

7.10 The spectrum

If (A, || ||, τ) is a Saks algebra, we denote by Mγ(A) the set of γ-continuous
multiplicative functionals f from A into C with f(e) = 1. MγA is called
the spectrum of A. We regard Mγ(A) as a topological space with the weak
topology induced from (A′, σ(A′, A)). Then Mγ(A), a subspace of a locally
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convex space, is completely regular. Mγ(A) is a (topological) subspace of the
spectrum of the Banach algebra (A, || ||).

8 The space C∞(S)

We now consider the most developed field of applications of mixed topologies
– the theory of strict topologies on spaces of bounded, continuous functions.
In fact, BUCK’s original work on such topologies was one of the moving
factor in the development of the theory. In our treatment we have tried
to emphasise the unifications and simplifications which can be achieved by
presenting the theory from the point of view of the topics of chapter ??.

In the next section we consider the basic properties of strict topologies,
in particular establishing the identity of the mixed topology γ[|| ||, τk] with
Buck’s topology which was defined a very general Stone-Weierstrass theo-
rem, characterisations of separability of C∞(X) and a result on its Mackey
topology.

In §2 we study the algebraic structure of C∞(X), identigying its spectrum
and obtaining a Gelfand-Naimark type theory with its consequences for such
spaces. §3 is dedicated to duality theory for C∞(X) – in particular, with
the determination of its dual as the space of bounded Radon measures on
X and some results on the γ-equicontinuous subsets thereof (these coincide
with the classical notion of uniformly tight sets of measures). The fourth?
section is devoted to spaces of vector-valued continuous functions and in the
fifth we define generalised strict topologies on C∞(X) which are related to
various continuity properties for measures and have received some attention
recently.

The six? section is devoted to representation theorems for operators
on C∞(X)-spaces. Using the apparatus of chapter I, we obtain simple and
trasparent proofs of results which subsume and generalise results on operators
from C(K)-spaces into Banach spaces. In the final section, we give a brief
survey of topic of uniform measures. Here the structure of a Co-Saks space
plays a central role. The main result is a compact ness theorem of PACHL,
for which we bring a simplified proof.

9 The strict topologies

In this chapter, X will always denote a completely regular Hausdorff topo-
logical space, S a saturated family of closed subsets of X (that is, ∪S
is dense n X and S is closed under the formation of finite unions and of
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closed subsets). Such a family is of countable type if there is a countable
subfamily S∞ so that each B ∈ S is contained in some B1 ∈ S.

Examples of saturated families are:

F : the finite subsets of X ;

K: the compact subsets of X ;

B: the bounded, closed subsets of X (recall that a subset B ⊆
X is bounded if each continuous, real-valued function on X is
bounded on B).

We denote by

C(X) – the space of continuous, complex-valued functions on X .

C∞(X) – the space of bounded, continuous, complex-valued func-
tions on X .

|| ||∞ denotes the supremum norm on C∞(X). If B ⊆ X then

{pB : x→ sup{|x(t)| : t ∈ B}

is a seminorm no C∞(X). If B is bounded, we can regard it as a seminorm on
C(X). If S is a saturated family, then τS denotes the locally convex topology
defined by the seminorms {pB : B ∈ S}. Then (C∞(X), || ||∞.τS) is a Saks
space and we denote by βS the associated mixed topology.

Proposition 48 1. τS ⊆ βS ⊆ τ|| ||∞ and τS − βS on the norm bounded
sets;

2. a subset of C∞(X) is βS-bounded if and only if it is not bounded;

3. a sequence (xn) in C∞(X) is βS-convergent to zero if and only if it is
norm bounded and τS-convergent to zero;

4. a subset of C∞(X) is relatively βS-compact if and only if it is norm
bounded and relatively τS-compact;

5. (C∞(X), βS) is barrelled or bornological if and only if BS = τ|| ||∞;

6. a linear operator T from C∞(X) into a locally convex space is βS-
continuous if and only if its restriction to the unit ball of C∞(X) is
τS-continuous;

7. if S is of countable type, then the unit ball of C∞(X) is τS-metrisable
and so linear mapping T from C∞(X) into a locally convex space is
βS-continuous if and only if it is sequentially continuous.
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Corollar 13 A subset of C∞(X) is βK-precompact if and only if it is norm
bounded and equicontinuous.

Definition 13 Let S∞ and S∈ be saturated families in X. X is S∞ − S∈
normal if for every pair A,B of disjoint, closed subsets of X with A ∈ S∞,
B ∈ S∈ there is a continuous function x : x→ [0, 1] with

x|A = 0 and x|B = 1.

We say that X is S-normal if X is S − P normal where P is the family of
all closed subsets of X.

Note that everyX isK-normal (in fact, for a Hausdorff space, K-normality
is equivalent to complete regularity – see BUCHWALTER.

The following Proposition is a generalisaton of URYSOHN’s theorem and
can be proved in exactly the same way.

Proposition 49 X is S − S normal if and only if for each A ∈ S and each
continuous mapping x : A→ [0, 1] there is a continuous x̃ : x→ [0, 1] so that
x̃|A = x.

Proposition 50 The sufficiency of the condition X ∈ S is trivial. Suppose
that X 6∈ S. Then we can find, for each seminorm pB (B ∈ S), an X in
the unit ball of C∞(X) so that pB(x) = 0 and ||x||∞ = 1 which implies the
result.

In the following Proposition, we examine the problem of the completeness
of (C∞(X), βS). It is convenient to introduce the following concept: a space
X is S-complete if each mapping x : X → C is continuous if and only if
x|A is continuous for each A ∈ S (it suffices to consider bounded functions).
For example, X is F -complete if and only if it is discrete. The K-complete
spaces are precisely the kR-spaces.

Locally compact spaces and metrisable spaces are K-complete. To each
space X one can associate an S-complete space in natural way: we give X
the weak topology defined by the family of mappings from X into C which
are such that their restitions to each A ∈ S are continuous. We denote X
with this topology by XS . Then XS is S-complete and X is S-complete if
and only if X = XS . C

∞(XS) is precisely the space of bounded mappings
from X into C whose restrictions to teh sets of S are continuous.

Proposition 51 Suppose that ∪S = X . Then C∞(X), βS) is complete if X
is S-complete. The converse is true if X is S − S-normal.
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Proof. Suppose that X is S-complete. Let (xα)α∈I be a τS-Cauchy net in
B|| ||∞ , the unit ball of C

∞(X). Then (xα) converges pointwise to a function x
from X into C and to restriction of x to A ∈ S is continuous, as the uniform
limit of (xα|Aα∈I

. Hence x is continuous and xα → x in ?

Now suppose that (C∞(X), βS) is complete and that x : X → C is such
that x|A is continuous for each A ∈ S. We show that x is continuous when
X is S −S normal. It is no loss of generality to suppose that x : X → [0, 1].
For each A ∈ S, let xA be a continuous function from X into [0, 1] so that
xA = x on A 49. Then (xA)A∈S is Cauchy net for βS and so converges to a
function in C∞(X) i.e. x ∈ C∞(X).

Corollar 14 1. (C∞(X)βK) is complete if and only if X is a kR-space;

2. (C∞(X)βF) is complete if and only if X is discrete.

Corollar 15 Suppose that X is S − S normal and that ∪S = X . Then the
completion of (C∞(X), βS) is (C∞(S), βS).

These results can be intepreted as follows: under the restriction oper-
ators, the family {C∞(A);A ∈ S) of Banach space projective limit of this
spectrum is naturally identificable with (C∞(XS), || ||∞, τS), in particular,
with (C∞(X), || ||∞, τS) if X is S-complete.

Now we give a concrete representation of a family of seminorms which
defines βS . From these one can easily deduce that the mixed topology βS
reduces, in special cases, to the strict topologies which have been studied
on space of bounded, continuous functions. We denote by L+

S the set of
bounded non negative upper semi-continuous funcitons φ onX which vanish
at infinity with respect to S i.e. which satisfy the condition: for each
ǫ > 0,

{t ∈ X ′′φ(t) ≥ ǫ} ∈ S.
If φ ∈ L+

S ,
pφ : x→ ||φx||∞

is a seminorm on C∞(X). The family of all such seminorms defines a locally
convex topology β̃ on C∞(X) (note that the characteristic function of each
A ∈ S is in L+

S and so β̃ is finer that τS).

Proposition 52 If X is S − S normal, then β̃ = βS .
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Proof. We note first that (C∞(X), || ||∞, τS) satisfies condition a) of I.4.4.(ist
nicht da). If A ∈ S and x ∈ C∞(X) then, by 49, there is a y ∈ C∞(X) so
that y = x on A and so x = y + z is a suitable decomposition of x.

We now show that βS is finer that β̃ i.e. that β̃ is coarser than τS on
By∞ . If φ ∈ L+

S , ǫ > 0 and A := {t ∈ X : φ(t) ≥ ǫ} then for x ∈ B|| ||∞ with
pA(x) ≤ {ǫ supt∈X |φ(t)|}−1 we have pφ(x) ≤ ǫ. On the other hand if V is a
βS-neighbourhood of zero, then by I.4.4., it contains a set of the form

{x ∈ C∞(X) : pAn(x) ≤ ln}

where (An) is an increasing sequence in S and (ln) is a strictly increasing
sequence of positive numbers which converge to infinity. Then if

l−11 (t ∈ A1)

φ : t → l−1n (t ∈ An \ An−1)
0 (t ∈ X \ ∪An)

φ is in L+
S and V contains the unit ball of pφ¿

We now give a Stone-Weierstraß theorem for BS . For convenience, we
consider the space C∞

R
(X) of real valued funcitons on X as a real vesctor

space. The results can be extended to complex-valued funcitons using stan-
dard methods. Since the sets of S are not necessarily compact, we need a
refinement of the classical Stone-Weierstraß theorem due to NEL. Recall that
a subset of X is a zero-set if it has the form x−1(0) for some x ∈ C∞

R
(X). A

subset M of C∞
R
(X) separates disjoint zero-sets if for each pair A,B of

disjoint zero sets in X , there is an x ∈M so that x(A) and x(B) are disjoint.
The following Lemma follows from the fact that the points of the Stone-Čech
compactification βX of X are limits of z-ultrafilters in X . Its proof can be
found in NEL.

Lemma 9 Let M be a subset of C∞
R
(X) which separates disjoint zero sets in

X. Then M , regarded as a subset of C∞
R
(βX), separates the points of βX.

Proposition 53 Suppose that M is a subalgebra of C∞
R
(X) so that for each

A ∈ S, MA, the restriction of M to A, separates disjoint zero-sets in A
and contains a function which is bounded away from zero on A. Then M is
βS-dense in C∞

R
(X).
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Proof. We can assume that M is βS-closed. Then it is norm closed and
so is a lattice under the pointwise ordering. We show that if x ∈ C∞

R
(X),

0 < ǫ < 1 and if A ∈ S, then there is a y ∈ M so that ||y||∞ ≤ ||x||∞ + 1
and pA(x− y) ≤ ǫ. MA, regarded as an algebra of functions on βA, satisfies
the conditions of the classical Stone-Weierstraß theorem (for MA separates
the points of βA by 9. Hence MA is norm-de? in C∞

R
(A) and so there isa

y1 ∈M with pA(x− y)1) ≤ ǫ. The

y := sup{inf(y1, ||x||∞ + 1),−(||x||∞ + 1)}
is the required functiton.

Corollar 16 Let M be a subalgebra of C∞
R
(X) so that separates the points of

X and for each t ∈ X there is an x ∈M with x(t) 6= 0. Then M is βK-dense
in C∞

R
(X).

We now consider the problem of characterising those spaces for which
(C∞(X), βS) is separable. Since the Banach space C∞(A) (A ∈ S) can only
be separable if A is compact (this is a classical result of M. KREIN and S.
KREIN and follows from the fact that the Stone-Čech compactification of
a non-compact space is never metrisabel – sen GILLMAN and JERISON
and C∞(A) is, at least when X is S − S normal, a continuous image of
(C∞(X), γS), it is natural to impose the condition that S ⊂ K i.e. the sets
of S are compact.

Proposition 54 If F ⊆ S ⊆ K then (C∞(X), βS) is separble if and only if
there is a weaker separble, metrisable topology on X.

Proof. Since we shall use the Stone-Weierstraß theorem, it is convenient to
restrict attention to C∞

R
(x). If M is a countable βS-dense subset of C∞

R
(x),

then the weak topology defined by M satisfies the given conditions.
Sufficiency: let τ be a suitable separable, metrisable topology onX . Then

by Urysohn’s metristion theorem (WILLARD). (X, τ) can be embedded in
a compact, metrisable space Y . For each positive integer n, we can find a
finite (diam (U) is the diameter of U). Let φn be a partition of unity of Y
subordinate to U\ and denote by M the subalgebra of C∞

R
(X). Then M is

βS-dense by 16 and so (C∞
R
(x), βS) is separable.

Remark. It follows from SMIRNOV’s metrisation theorem (see WILLARD)
that if X is locally compact and para-compact and S possesses a weaker
metrisable topology, then X is metrisable. Hence if X is locally compact,
paracompact and (C∞

R
(X), βS) is separable, then X is metrisable.
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Proposition 55 If X is discrete, then (C∞
R
(X), βS) is separable if and only

if card (X) ≤ card(R).

Proof. The necessity folllows from 54 and the fact that the cardinality of
a separable metrisable space is at most card (R). On the otherd and, R
(and hence any subset) has a separable, metrisable topology – the natural
topology.

Remark. A more intricate argumet shows that the same result holds for
metrisable spaces X (see SUMMERS).

In the third section of this chaper we shall consider duality for C∞( X) with
strict topologies. However, using the theory of Chapter I, we can already pro-
vide some nfromation on this duality, without specifically calculating the dual
space – in particular, we cangive sufficient conditons for βK ot be the Mackey
topology and we can characterise the relatively weakly compact subsets of
C∞( X).

Partitions of unity for C∞(X): Let X be a locally compact, paracom-
pact space. Then there exists a partition ΦK : K ∈ K} of unity on X so that
suppΦK ⊆ K. Now (C∞(X), || ||, τK) is the Saks space projective limit of the
system {C(K) : K ∈ K} of Banach spaces and if we define the mappings

TK : x→ (xΦK)
∧

from C(K) into C∞(X) where (xφK)
∧ denotes the extension of xφK to a

function on X obtainded by setting it equal to zero off K, then {TK} is a
partition of unity in the sense of ?

Proposition 56 Let X be locally compact and paracmpact. Then (C∞(X), βK)
is a Mackey space and has the Banach-Steinhaus property. Also a linear map-
ping from C∞(X) into a separable Fréchet space is βK-continuous if and only
if its graph is closed.

In the next results, the phrase “weak topology on C∞(X)” will be used
to denote the weak topology defined by the dual of (C∞(X), βK).

Proposition 57 A sequence (xn) in C∞(X) converges weakly to x if and
only if {xn} is uniformly bounded and the functions xn converge pointwise to
x.

Proposition 58 A bounded subset B of C∞(X) is weakly precompact if and
only if it is precompact for the topology of pointwise convergence on X. Hence
if X is K-complete, then B is relatively weakly compact if and only if it is
relatively compact for the topology of pointwise convergence on X.
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Proof. Using 56, we can reduce 57 and 58 to the case where X is compact.
(See, for example GROTHENDIECK, pp. 12 and 209 for this case.)

Remark. Using results from GROTHENDIECK, one can strengthen 58 as
follows: suppose that X is K-complete and has a dense subset which is the
union of countably many compact sets. Then the following conditions on a
bounded subset B of C∞(X) are equivalent:

a) B is relatively countable compact for τp (resp. for the weak topology);

b) B is relatively sequentially compact for τp (resp. for the weak topology);

c) B is relatively compact for τp (resp. for the weak topology).

Here τp denotes the topology of pointwise convergence on X .

Remark. One of the main themes of this Chapter will be that of relating
the topological properties of X with the linear (or algebraic) and topological
properties of X with the linear (or algebraic) and topological properties of
C∞(X) with various mixed topologies. We list here some examplex without
prooofs:

1. X is hemi-compact (i.e. K is of countable type) if and only if B|| ||∞ is
βK-metrisable;

2. B|| ||∞ is βK-metrisable if and only ifX is hemi-compact and eachK ∈ K
is metrisable;

3. if X is locally compact, then B|| ||∞ is βK-separable and metrisable if
and only if X is separable and metrisable (alternatively if X is the
countable union of compact, metrisable sets);

4. the following conditions are equivalent:

a) B|| ||∞ is βK-compact (i.e. (C∞(X), βK) is semi-Montel);

b) (C∞(X), βK) is semi-reflexive;

c) (C∞(X), βK) is a Schwartz space;

d) X is discrete.

5. (C∞(X), βK) is nuclear if and only if X is finite;

6. βK = τK on C∞(X) if and only if the union of countable many compact
subsets ofX is relatively compact. If this is the case, then (C∞(X), βK)
is a (DF )-space.
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Remark. A number of results given in this section for C∞(X) with the
topology βK (e.g. those of 9 can be extended to βB with the natural changes.
We leave the task of carrying out such extension on the interested reader,
metioning only that 56 can be extended to the topology βB by replacing the
assumption of lacal-compactness by local boundedness (obvious definiton)
and that SCHMETS and ZAFARANI have studied the topology βP in [190].

10 Algebras of bounded, continuous functions

In the first part of this section, we work exclusively with the strict topology
defined by the family K of compact subsets of X . To simplify the notation,
we denote it by β. First we note that (C∞(X), || ||, τK) is a pre-Saks algebra
(that is, its completion is a Saks algebra).

Proposition 59 Multiplication is continuous on (C∞(X), β).

Proof. We use the representation of β given in 30. If ̟ ∈ L+
K so does

ψ :=
√
̟ and we habe the following inequality

p̟(xy) ≤ pψ(x0pψ(y) (x, y ∈ C∞(X)).

In general, inversion is not continuous on C∞(X) and so (C∞(X), β) is not
a locally multiplicatively convex algebra in sense of MICHAEL.

If t ∈ X then
δt : x→ x(t)

is an element of the spectrum Mγ(C
∞(X)) of C∞(X). We habe thus con-

structed a mapping δ : t → δt from X into Mγ(C
∞(X). We call it the

generalised Dirac transformation. It is injective since C∞(X) separates
X .

Proposition 60 δ is a homeomorphism from X onto Mγ(C
∞(X)).

Proof. Since the topology on X and Mγ(C
∞(X)) are the weak topologies

defined by C∞(X), it is sufficient to show that δ is surjective. Let f be a β-
continuous multiplicative functional on C∞(X) and denote by M the kernel
of the restriction of f to C∞

R
(X). Then there is a t0 ∈ X so that x(t0) = 0

for each x ∈ M (for otherwise M would satisfy the conditions of 16 and so
would be β-dense in C∞

R
(X) i.e. f would be zero).

51



Note that M separates X . For otherwise there would be points s1, s2 in
X so that x(s1) = x(s2) for x ∈ M . Then M would lie in the kernel of the
linear form x → x(s1)− x(s2) and so would habe codimension at least two.
Then M = {x : x(t0) = 0} (for both these sets have codimension one) and
so f = δt0 . If X,X1 are completely regular spaces, ̟ : X → X1 continuous,
then

C∞(̟) : x→ x ◦̟
is a β-continuous star homomorhism from C∞(X1) into C∞(X). In fact,
every such homomorhism has this form as the following result shows:

Proposition 61 If φ is β-continuous homomorhism from C∞(X1) into C
∞(X)

then φ has the form C∞(̟) for some continuous mapping ̟ from X into
X1.

Proof. If t ∈ X then δt◦φ is a β-continuous multiplicative form on C∞(X1)
and so is defined by a unique element of X1 — we denote this element by
̟(t). By the construction of this mapping we have

φ(x) = x ◦̟

for each x ∈ C∞(X1). Hence for each x ∈ C∞(X1), x ◦̟ ∈ C∞(X) and this
property characterises continuity for mappings between completely regular
space.

Corollar 17 X andX1 are homeomorphic if and only if C∞(X) and C∞(X1)
are isomorphic as pre-Saks algebras.

We remark that the following version of the Banach-Stone theorem for
non-compact spaces can be deduced from 17: if there is an isometry from
C∞(X) onto C∞(X1) which is also β-bicontinuous, then X and X1 are home-
omorphic.

If (A, || ||, ) is a commutative pre-Saks algebra with unit and if x ∈ A,
then the mapping

x̂ : f → f(x)

from Mγ(A) into C is an element of C∞(Mγ(A)). Thus we have constructed
an algebra homomorhism from A into C∞(Mγ(A)). We call it the gener-
alised Gelfand-Naimark transform. Note that we canregard Mγ(A) as
a subspace of the spectrum M(A) of the normed algebra (A, || ||). The gen-
eralised Gelfand-Naimark transform is then the composition of the Gelfand-
Naimark transform for A and the restriction operator from C(M(A)) into
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C∞(Mγ(A)). In particular, if a is a pre-Saks C∗-algebra, then the gener-
alised Gelfand-Naimark transform is a star-homomorphism (this also follows
directly from 61).

Proposition 62 If (A, || ||, τ) is a commutative Saks C∗-algebra then the
generalised Gelfand-Naimark transform is an algebra isomorphism from A
onto C∞(Mγ(A)).

Proof. We first note that the image of A is C∞(Mγ(A)) is a self-adjoint,
separating subalgebra which contains the constants and so is β-dense by the
complex version of 16. Now let P be a family of C∗-seminorms on A which
define τ (as in ?). For each p ∈ P , we denote by Ap the associated C∗-algebra
and by M(Ap) its spectrum. We canregard M(Ap) as a (compact) subset of
Mγ(A) and we show that Mγ(A) =

⋃

p∈P M(Ap). If f ∈ Mγ(A), then, by
Duality, there is an increasing sequence (pn) in P and an fn ∈ Ap′n so that
∑

fn is absolutely summable to f . We can also suppose that ||∑ fn|| <
1 + ǫ for an arbitrary positive ǫ. Choose n0 so that

∑

n>n0
||fn|| < ǫ. Then

f ∈ M(Apn0
for small enough ǫ. For if f 6∈ M(Apn0

) then there is an
x ∈ C∞(Mγ(A)) so that ||x|| ≤ 1, x(f) = 1 and x = 0 on M(Apn0

). By
the β-density of the image of A, there is an x − 1 ∈ A with ||x1|| ≤ 1 + ǫ
and |x̂1(f)| ≤ 1 − ǫ, |x̂1| < ǫ on M(Apn0

). Hence, for each g ∈ Ap′n0
with

||g|| < 1 + ǫ we have

||f − g|| ≥ (1 + ǫ)−1||f(x1)− g(x1) ≥
1− ǫ
1 + ǫ

− ǫ

and we obtain a contradiction for small ǫ by taking g =
∑n0

n=1 fn.
To complete the proof, we let S be the family of closed subsets of Mγ(A)

which are containded in some M(Ap) (the p depending on the subset) and,

as a temporary notation, Â be the Saks space projective limit of the systems
{C(M(Ap))}p∈P .

Consider the following diagram

file=bild14.eps,height=3cm,width=7cm

where the vertical arrows are the corresponding Gelfand-Naimark transforms
and so are isomorphisms. Then the general General transform, being the
unique arrwo from A into Â which preserves commutativity, is an isomor-
phism an so Â = C∞(Mγ(A)) and the generalised Gelfand-Naimark trans-
form is surjective.
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Note that the inverse of the generalised Gelfand-Naimark transform is β-
continuous. However, we cannont, in general, expcet it to be bi-continuous.
For example, if S is a proper subfamily of K which contains F and si such
that a function x : X →? is continuous if and only if its restriction to
the sets of S are continuous, then the general Gelfand-Naimark transform
for (C∞(X), || ||, τS) is (up to the obvious identifications) the identity from
(C∞(X), || ||, τS) into (C∞(X), || ||, τK) and this is not continuous in general
(as an example of such an S we could take the family consisting of the ranges
of convergent sequences and their limit points in a metrisable space).

We now characterise local compactness for X in terms of properties of
C∞(X). Let (A, || ||, τ) be a commutative Saks algebra and let P be a suitable
family of submultiplicative seminorms defining τ . If p ∈ P , put

Ip := {x ∈ A : p(x) = 0}
A(Ip) := {y ∈ A : yIp = 0}.

A is perfect if
∑

p∈P A(Ip) is γ-dense in A. Obviously this property is
preserved if we refine the topology τ . As an example, if p is seminorm pK
(K ∈ K) on C∞(X), then

A(Ip) = {x ∈ C∞(X) : x(t) = 0 for t ∈ X \K}.

Hence A(Ip) is Cc(X), the space of functions in C∞(X) with compact sup-
port.

Proposition 63 A completely regular space is locally compact if and only if
C∞(X), || ||, τK) is perfect.

Proof. In view of the above remarks, this is equivalent to the following
statement: X is locally compact if and only if Cc(X) is β-dense in C∞(X).

Suppose that X is locally compact. Then Cc(X) separates X and so is
β-dense by 16.

Now suppose that Cc(X) is β-dense in C∞(X). If t ∈ X , then there is
an x ∈ Cc(X) so that x(t) > 0. Then

{s : x(s) > 0}

is relatively compact neighbourhood of t.
Using the generalised Gelfand-Naimark transform, it is easy to see that if

A is a perfect, commutative Saks C∗-algebra, thenMγ(A) is locally compact.
The reserve implication is not true.
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Let I be an ideal in C∞(X) and write

Z(I) =
⋂

x∈I

Z(x)

where Z(x) := x−1(0) is the zero-set of x. We put

I(Z(I)) := {y∞(X) : y = 0 on Z(I)}.

Then I(Z(I)) is obviously a β-closed ideal and I ⊆ I(Z(I)). We shall now
show that I = I(Z(I)) if and only if I is β-closed. This result is well-known
for compact X and we shall use this fact in our proof of the general case.We
sketch briefly how it can be proved. Suppose that x ∈ I(Z(I)). For each
ǫ > 0 we can find an open neighbourhood U of Z(I) and a function xǫ in c(X)
so that xǫ vanishes on U and ||x− xǫ|| ≤ ǫ. We shall show that xǫ ∈ I which
will finish the proof. By a compactness argument, there exists x− 1, . . . , xn
in I so that U ⊂ ⋂n

i=1 Z(x1). Then U contains the zero-set of the element
y :=

∑

i |xi|2 of I. But then the zero of y and so xǫ is a multiple of y.

Proposition 64 Let I be a β-closed ideal of C∞(X). Then

I = I(Z(I)).

Proof. I is a norm-closed ideal in C(βX) and so there is a closed set K0

in βX so that I = {x ∈ C(βX) : x = 0 on K0}.
It is obviously sufficient to show that K0 = clβXZ(I) (closure in βX) for

then if a fuction vanishes on Z(I) its extension to βX vanishes on K0 and
so is in I. If this were not the case, there would be a t0 ∈ K0 \ clβXZ(I).
Then there is a y0 ∈ C(βX) with y0(t0) = 1 and y = 0 on a neighbourhood
of clβXZ(I).

We now show that y0 ∈ I which gives a contradiction. To do this, we
show that for each K ∈ K, ǫ > 0, there is a yK,ǫ in I so that pK(y0−yK,ǫ) ≤ ǫ
and ||yK,ǫ|| ≤ ||y0||. Then (yK,ǫ) is a net in I which is

¯
− convergenttoy0.

To construct yK,ǫ we proceed as follows: let IK denote the projection of I in
C(K). Then IK is an ideal in C(K) and so ĪK , its closure in the Banach space
C(K), is a closed ideal in C(K). Hence it has the form {y ∈ C(K) : y = 0
on Z(I)∩K}. Hence y|K ∈ ĪK and so Tietze’s theorem implies the existence
of the required yK,ǫ.
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The results of this section can be used to give a natural construction
of the Stone-Čech compactificaiton and the real-compactification of a com-
pletely regular space. We describe this briefly, firstly to display the connec-
tion between mixed topologies and the theory of topological extensions and
secondly because it will allow us togive a significant generalisation of 60.

If X is a completely regular space, (C∞(X), || ||) is a Banach algebra. Its
spectrumM(C∞(X))) is a compact space which we denote by βX . The Dirac
transformation can be regarded as a (topological) embedding of X into βX .
It has the following universal property: if ̟ is a continuos mapping from X
into a comapct space K, then there is a unique continuos extension ˜̟ of ̟
to a continuos mapping from βX into K. For consider the operator

C∞(̟) : C(K)∞(X) = c(βX)

which is || ||−̄continuosandso(bytheclosedgraphtheorem, ormoreelementarily, by30)————-
————continuos.Hence, by61,C∞(̟) (regarded as a mapping from C(K)
into C(βX)), has the form C∞( ˜̟ ) for some ˜̟ : βX → K. ˜̟ has the
required property.

Now we denote by I(X) the set of those functions in C∞(X) which habe
no zeros in X (i.e. are invertible in the algebra C∞(X)). Every x∞(X) has a
unique extension to a function in C(βX) which we shall continue to denote
by x. Then we put

νX :=
⋂

x∈I(X)

CβX(x)

where CβX(x) = {s ∈ βX : x(x) 6= 0} is the co-zero set of X in βX .
νX is the real-compactification of X and X is real-compact if νX =

X . The above rather unfamiliar definition is the natural one from the point
of view of strict topologies.

The following equivalent forms are better known:

Proposition 65 1. νX =
⋂

x∈CR(X) x̃
−1(R) where x̃ denotes the exten-

sion of x ∈ CR(X) to a function from βX into the 2-point compactifi-
cation of R.

2. νX is the completion of X with respect to the C(X)-uniformity on X.

Proof. 1. follows from the simple fact that if x ∈ I(X), then 1/|x| ∈ CR(X)
and the zeros of x in X

¯
are precisely the points where (1/|x|)∼ is infinite in

value.
For 2. see GILLMAN and JERISON [87], § 15.13.
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Corollar 18 For a completely regular space X, the following are equivalent:

1. X is complete for the C(X)-uniformity;

2. X is real-compact;

3. for each s ∈ βX \X, there is an x ∈ I(X) with x(s) = 0.

Now it is clear that the bounded subsets of X are precisely those subsets
of X which are precompact in the C(X)-uniformity or, by the above result,
relatively compact in νX .

This remark makes it natural to generalise the definitions of 9 to include
saturated families S of subsets of νX (for reasons which will be clear later, it
is convenient to drop the assumption that the sets be closed). Hence if S is
such a family, we can define the strict topology

¯
S on C∞(X). We shall always

assume that the subsets of S are relatively compact in νX . The following
result is a significant generalisation of 60.

Proposition 66 The spectrum of the topological algebra (C∞(X),
¯
S) is ⋃B∈S clνX(B)

(closure in νX).

Proof. It is clear that any point in
⋃

B∈S clνX(B) defines an element in
the required spectrum. On the other hand, any point in teh spectrum is
defined by a member of νX (apply 60 to the space νX). Hence it is sufficent
to show that if t0 6∈

⋃

B∈S clνX(B) then δt0 is not
¯
S-continuous. But this

follows easily from the fact that for each B ∈ S there is an x ∈ B|| ||∞ so that
x(t0) = 1 and x = 0 on B.

Corollar 19 The spectrum of (C∞(X),
¯
S) is ⋃B∈S clνX(B).

Remark. The space of 19 has been introduced by BUCHWALTER [39]
who denoted it by X ′′ (because of a certain format analog with the bidual
of a locally convex space) in connectic with the concept of a µ-space i.e. a
completely regular space in which B = K (cf. the concept of semi-Montel
locally convex as the limit of the transfinite series X,X ′′(X ′′), . . . and X is
a µ-space if and only if X = µX (or alternatively if X =). It is now clear
that X is a µ-space if and only if

¯
K =

¯
B on C∞(X).

57



11 Duality Theory

A classical result of BUCK for the space C∞(X) (X locally compact) is that
the dual of (C∞(X), β) is the spce of bounded Radon measures on X . In
this section we shall extend this result to completely regular spaces. We
shall take this opportunity to discuss various definitions of Radon measures
on completely regular spaces.

Definition 14 A preasure on X is a member of the (vector space) projec-
tive limit of the system

{ρK1,K :M(K1)→ M(K);K ⊆ K1, K,K1 ∈ K(X )}.
In other words, a premeasure is a system µ = {µK} of Radon measures which
satisfies the compatibility relations µK1|K = µK (K ⊆ K1). If µ = {µK} is
a premeasure on X, |µK |∗ denotes the outer measure on K defined by |µK |
(see BOURBAKI [25] §VI.1.4).

Thus µK |∗ is defined as follows: if U ⊆ K is open, |µK |∗(U) is defined
to be sup{

∫

fd|µK|} where f ranges over the family of positive, continuous
functions on K with f ≤ χU . For general A ⊆ K, |µK |∗(A) is defined to be

inf{|µK|∗(U) : U open in K,A ⊆ U}.
Now if C is a subset of X we define |µ|∗(C) to be sup{|µK|∗(C ∩K)LK ∈
K(X )}.

A premeasure µ on X is said to be tight if for each ǫ > 0 there is a
K ∈ K(X ) so that |µ|∗(X \K) < ǫ. An equivalent condition is the existence
of an increasing sequence {Kn} in K(X ) so that |µ|∗(X \ Kn) → 0. We
denote by Mt(X) the space of tight measures on X . It is clearly a vector
space. If x∞(X), mu ∈Mt(X), then the limit limn→∞

∫

x|KndµKn exists and
is independent of the particular choise of (Kn). We write

∫

xdµ for this limit.
If K ∈ K(X ) and µ ∈ M(K), then µ defines a tight measure on X in a

natural way: if K1 ∈ K(X ) and K1 ⊆ K we define µK1 to be the restriction
of µ to K1. If K1 ⊂ K we define µK1 to be the measure induced on K1 by µ
(for example, as a linear form on C(K1), µK1 is the mapping

x→
∫

x|K1dµ).

Then µ̃ := {µK1} is a tight measure on X and |µ̃|∗(X \K) = 0. Hence we can
(and do) identify the space of measrues on K with the subspace of Mt(X)
consisting of those µ for which µ|∗(X \ K) = 0. We denote by M0(X) the
subspace

⋃

K∈K(K) M(K) — the space of measures with compact support.

Then µ ∈M0(X) if and only if there is a K ∈ K(K) so that µ|∗(X \K) = 0.
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Proposition 67 The dual of (C∞(X), τK) is naturally isomorphic toM0(X)
under the bilinear form

(x, µ)→
∫

xdµ.

Proof. (C∞(X), τK) is a dense subspace of the locally convex projective
limit of the system

ρK1,K : C(K1)→ C(K);K ⊆ K1, K,K1 ∈ K(X )}.

Now by standard results on the duals of projective imits (see SCHAEFER,
Ch. I [167] § IV.4.4.), the dual of the latter space is the union of the spaces
{M(K)K∈K(X ) i.e. M0(X) under the above identification.

Proposition 68 The dual of (C∞(X), β) is isomorphic to the space Mt(X)
under the bilinear form

(x, µ)→ (

∫

xdµ.

Proof. Each µ ∈Mt(X) defines a linear form on C∞(X) and we show that
it is τK-continuous on the unit ball of C∞(X). If ǫ > 0, choose K ∈ K(X ) so
that |µ|∗(X \K) < ǫ. Then if

∣

∣

∣

∣

∫

xdµ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

K

+

∫

X\K

xdµ

∣

∣

∣

∣

≤ ǫ+ |µ|∗(X) · ǫ

and |µ|∗(X) <∞ since µ is tight.
Now let f be a β-continuous linear form on C∞(X). Then we can express

f as a sum
∑

fn where fn is a continuous linear form on some C(Kn) and
∑

n ||fn|| < ∞. We can regard fn as a premeasure {µnK} as above. Now
{µnK}n∈N is absolutely summable (in the banach spaceM(K)) and so there is
a µK ∈M(K) with µK =

∑

µnK . It is easy to see that µ := {µK : K ∈ K(X )}
is a premeasure on X . If we let K1

n :=
⋃n
k=1Kk then

|µ|∗(X \K1
n) ≤

∑

k>n

||fk||

and so µ is tight. One can check that f(x) =
∫

xdµ for x∞(X).
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12 Alternative definitions of Radon measures

There are several alternative, equivalent definitions for (bounded) Radon
measures on a completely regular space and, before continuig, we describe
the most important of these. For convenience, we consider only non-negative
measures:

A. A compact-regular Borel measure µ on X is a -additive finite mea-
sure on the Borel algebra of X so that for each Borel set A in X

µ(A) = sup{µ(K) : K ∈ K(X ),K ⊆ A}.

B. A Choquet measure on X is a bounded set funciton µ : K(X )→ R+

which is increasing, additive (i.e. µ(K1) + µ(K2) = µ(K1 ∪ K2) +
µ(K1 ∩K2) for each pair K1, K2 of compacta) and continuous on the
right (i.e. for ǫ > 0, K ∈ K(X ) there is neighbourhood V of K os that
µ(K1) ≤ µ(K) + ǫ for each K1 ∈ K(X ) with K ⊆ K1 ⊆ V ).

C. A tight measure on X is a bounded, Borel measure which satisfies
the tightness condition: for every ǫ > 0, there is a compact set K so
that µ(X \K) < ǫ.

D. A Radon measure µ on βX is concentrated on X if inf{µ(U) : U
open and βX \X ⊆ U} = 0.

Then one can show that the above concepts all coincide in a natural way
and corresponds exactly to the non-negative elements of Mt(X). A precise
discussion can be found in SCHWARTZ [191].

In teh next Proposition, we can characterise the β-equicontinuous subsets
of Mt(X).

Definition 15 We remark that if µ = {µK} is a tight measure on X then
so is the premeasure {|µK|}. We denote it by |µ|. A subset B of Mt(X) is
uiformly tight if it is bounded (for the norm) in Mt(X) and satisfies the
tightness condition:

for every ǫ > 0 there is a K ∈ K(X ) so that |µ|(X \K) < ǫ for
each µ ∈ B.

Proposition 69 A subset B of Mt(X) is uniformly tight if and only if it is
β-equicontinuous.
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Proof. We remark firstly that it follows easily from the characterisation
of equicontinuous subsets in the dual of a locally convex projective limit of
Banach spaces that a subset B1 of M0(X) is τK-equicontinuous if and only
if it is norm bounded and has compact support (i.e. there is a K ∈ K(X ) so
that each µ ∈ B vanishes on X \K). The result follows then from this fact.

Corollar 20 A uniformly tight subset of Mt(X) is relatively compact for the
weak topology defined by C∞(X).

Note that the converse of this result is not always true. In fact, the truth
of the converse is equivalent to (C∞(X), β) being a Mackey space. Hence,
the first claim of 56 can be restated as follows:

Proposition 70 Let X be a locally compact, paracompact space. Then a
weakly compact subset of Mt(X) is uniformly tight.

We now consider properties of the linear operator C∞(̟) induced by
a continuous mapping ̟ : X → Y . We denote by Mt(̟) the transposed
mapping of C∞(̟) so that Mt(̟) is a norm-bounded linear mapping from
Mt(X) into Mt(Y ). Note that if we regard a measure µ ∈ Mt(X) as a Borel
measure then Mt(̟)(ν) is the Borel measure

A→ µ(̟−1(A))

i.e. it coincides with the measure induced by ̟ in the classical sense.

Proposition 71 1. C∞(̟) is a quotient mapping from the Banach space
C∞(Y ) onto a norm-closed subspace of C∞(X);

2. an element µ in Mt(Y ) is in the range of Mt(̟) if and only if for each
ǫ > 0 there is a K ∈ K(X ) so that |µ|(Y \ ̟(K)) < ǫ. Mt(̟) is a
quotient mapping from Mt(X) onto a norm-closed subspace of Mt(Y );

3. C∞(̟) is an open mapping (for the strict topologies) from C∞(X) onto
its range if and only if ̟(X) is closed inY and for each K ∈ K(̟(X ))
there is a K1 ∈ K(X ) with ̟(K1) ⊆ K.

71 is proved by means of a series of Lemmas. To simplify the notation,
we denote the operators C∞(̟) and Mt(̟) by U and V respectively.

Lemma 10 71 1. holds.
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Proof. We show that if y∞(X) has the form x ◦ ̟ for some x ∈ C∞(Y )
then there is a z ∈ with ||z|| = ||y|| and y = z ◦̟. But this is the case for z
defined as follows:

z(t) = x(t) if |x(t)| ≤ ||y||x(t)||y||/|y(t)| otherwise.

Lemma 11 Suppose that X and Y are compact and ̟ is surjektive. Then
if µ ∈Mt(Y ) there is a ν ∈Mt(X) with ||µ|| = ||ν|| and V ν = µ.

Proof. Since̟ is surjektive, U is an injection and so an isometry fromC(Y )
onto a closed subspace A of C(X). We can then regard µ as a continuous
linear form on A and the result then follows by taking ν to be a Hahn-Banach
extension of this functional to C(X).

Lemma 12 µ ∈ Mt(Y ) is in the range of V if and only if for each ǫ > 0
there is a compact set K in X so that |µ|(Y \ ̟(K)) < ǫ. Then there is a
ν ∈Mt(X) with µ = V ν and ||ν|| = ||µ||.

Proof. Necessity: suppose that µ = V ν with ν ∈ Mt(X). Then for ǫ > 0,
there is a K ∈ K(X ), so that |ν|(X \K) < ǫ. Then clearly |µ|(Y \̟(K)) < ǫ.

Sufficiency: we can choose an increasing sequence (Kn) of compacta in
X so that |µ(Y \̟(Kn)) < 1/n. Let

A1 := ̟(K1), An := ̟(Kn) \̟(Kn−1) (n > 1)

and put µn := µ|An (An is a Borel set in Y ). Then one has ||µ|| =∑ ||µn||.
By applying 11 successively to the restrictions of̟ toK we get a sequence

(νn) of Radon measure where νn ∈ Mt(Kn). ||νn|| = ||µn|| and V νn = µn.
Then the series

∑

νn is absolutely summable in Mt(X) and its sum ν is the
required measure. In addition, we have

||ν|| ≤
∑

||νn|| =
∑

||µn|| = ||µ||.

Lemma 13 If V (Mt(X)) is weakly closed in Mt(Y ), then ̟(X) is closed in
Y .
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Proof. If x ∈ which Ux = 0, then x vanishes on ̟(X) and so on ̟(X).
hence if s ∈ ̟(X), then δs is in teh point of the kernel of U . But the latter
set is V (Mt(X)) by the bipolar theorem and so δn = V µ for some µ ∈Mt(X).
Then

1 = δs({s}) = V µ({s}) = µ(̟−1(s))

and so ̟−1({s}) is non-empty i.e. s ∈ ̟(X).

Lemma 14 If every β-equicontinuous subset in VMt(X) is the image of a
β-equicontinuous set in Mt(X), then each K ∈ K(̟(X )) is contained in the
image of a compact subset of X.

Proof. For such a K, let B := {δs : s ∈ K}. Then B is clearly uniformly
tight and so β-equicontinuous. Hence it is theimage of a β-equicontinuous
subset B1 of Mt(X). Then there is a K1 in K(X ) so that |µ|(X \K1) < 1/2
for each µ ∈ B1. If s ∈ K and µ ∈ B1 with V µ = δs, then

1 = δs({s}) = V µ({s}) = µ(̟−1({s})
and so ̟−1({s}) 6⊆ X \K1. Hence ̟(K1) ⊆ K.

To complete the proof of 71, we require the following standard result on
locally convex spaces:

Lemma 15 A continuous linear operator T from a locally convex space E
into a locally convex space F is an open mapping into its range if and only
if T (F ′) is (E ′, E)-closed in E ′ and each equicontinuous subset of T ′(F ′) is
the image of an equicontinuous subset of F ′.

Proof. See GROTHENDIECK [102].

Proof. of 71 Only 71 3. remains to be proved. The necessity of the given
condition follows from 13, 14 and 15.

Sufficiency: first we note that the polar B of VMt(X) in is the set
{x ∈: x = 0 on ̟(X)}. Suppose that µ ∈ B0. We show that µ ∈ VMt(X))∞

is weakly closed. There are compact sets Kn inX so that |µ|(X \Kn) ≤ 1.
We show that |µ|(Kn \̟(X)) = 0 for each n so tht

|µ|(X \ (Kn ∩̟(X))→ 0

which implies (by 12) that µ ∈ VMt(X). If this were not the case, there
would be an n so that

δ := |µ|(Kn \̟(X)) > 0.
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Choose m so that m > 2/δ. There is a continuous function in C(Kn) with
||x|| = 1, x = 0 on (Kn\̟(X)) and

∫

Kn
xdµ > δ/2. We can extend x without

increasing the norm to a function x in which vanishes on ̟(X) (and so is
the polar of VMt(x)). Then

∫

xdµ > δ/2− 1 > 0

which gives a contradiction.

A similar argument, applied to a uniformly tight set C in VMt(X), pro-
duces a uniformly tight set inMt(X) whose image is C. Hence the sufficiency
follows from 15.

As an application of the theory developed in this section, we give a func-
tional analytic proof of PROHOROV’s theorem on the existence of projective
limits of measures. We suppose that {̟′′βαXβ → Xα, α ≤ β, α, β ∈ A} is a
projective spectrum of completely regular spaces and that X is completely
regular space with continuous mappings̟α : X → Xα so that̟βα◦̟β = ̟α

(α ≤ β) (thus the system {̟α} corresponds to a continuous mappings from
X into the projective limit of the system {Xα}). Suppose that {µα : α ∈ A} is
a compatible system of bounded Radon measures on {Xα} (i.e. µα ∈Mt(Xα)
and Mt(̟βα(µβ) = µα for α ≤ β). We seek necessary and sufficient condi-
tions for the existence of a µ ∈ Mt(X) so that Mt(̟α)(µ) = µα for each
α.

Proposition 72 Such a µ exists if and only if

1. sup{||µα||Mt(Xα) : α ∈ A} <∞;

2. for each ǫ > 0 there exists a K ∈ K(X ) so that |µα|(Xα \̟α(K)) < ǫ
for each α.

Proof. The necessity of condition 1. is trivial and that of 2. follows from
71 2.

Now suppose that 1. and 2. are satisfied. If n ∈ N, choose Kn ∈ K(X )
so that |µα|(X \̟α(Kn)) < 1/n. Let

B := {µ ∈Mt(X) : ||µ|| ≤ sup ||µα|| and |µ(X \Kn) < 1/n}.
Then B is weakly compact in Mt(X). Let

Bα := {µ ∈ B :Mt(̟α)(µ) = µα}.
Then Bα is weakly compact and non-empty by 71 2. Hence ∩Bα 6= ̟ by the
finite intersection property.
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Using 67 and the ideas of 66 and 19, we can give a characterisation of the
dual of (C∞(X), βB) analogous to that of 12 C. for Mt(X). We denote this
dual by MB(X) (so that Mt(X) ⊆MB(X)).

Proposition 73 The spaceMB(X) can be naturally identified with the space
of Radon measure µ on βX which satisfy the following condition: for each
ǫ > 0 there is a B ∈ B so that |µ|(βX \ B̄) < ǫ (B̄ denotes the closure of B
in β).

Proof. By applying 67 (C∞(νX), β) we see that a βB-continuous linear
form, which can be regarded as a βK-continuous linear form on C∞(νX), is
defined by a Radon measure µ on |µ|(βX \K) < ǫ. Since µ is βB-continuous,
one can show as in proof of 67 that one can even take K to be of the form
B̄(B ∈ B(X )).

13 Representationof operators on C∞(X)

In this section, we consider Riesz-type representation theorems for operators
from C∞(X) into a Saks space. We use the projective limet representation
of Saks spaces with compact unit ball to give a simple proof of the result
for operators with range in such spaces and deduce some classical results
on operators with values in a Banach space F . To this end, we introduce
the space Mt(X ;F ) of tight F -valued measures i.e. the bounded, -additive
measures on the Borel sets of X with values in F which are inner regular
with respect to compact sets. Then integration defines a β-continuous linear
operator Tµ : x →

∫

xdµ from C∞(X) into F . µ → Tµ is an isometry from
Mt(X,F ) into (C∞(X);F ) and thus allows us to regard the former as a Saks
space by using the auxiliary topology of pointwise convergence on C∞(X).
In general, the mapping µ→ Tµ is not onto as the example of the identity on
C([0, 1]) shows. However, it is onto if F is finite dimensional — this is a trivial
generalistion of 67. In this case we have a natural isometric isomorphism
Mt(X ;F ) ∼= (C∞(X), F ) which is functorial, being given by integration.
This identification is also an isomorphism for the Saks space structures on
both sides.We note that if E is a Saks space, we can define Mt(X ;F ) in
an analogous manner and provide it with a naturall Saks space structure.
Of course, we define the boundedness with respect tot the norm and the
regularity with respect to the auxiliary topology. We remark that if the
complete Saks space E has a representation as a rojective limit S− lim←−

α
Eα

of a spectrum of Banach spaces, then Mt(X ;E) ∼= S − lim ←−
α
Mt(X ;Eα).
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Proposition 74 Let (E, || ||, ) be a Saks space with B|| || τ -compact, X a
completely regular space. Then if T : C∞(X) → E is a β − γ continuous
linear operator, there exists a Radon measure µ : (X) → E representing T
i.e. T is the operator

Tµ : x→
∫

xdµ.

Conversely, every Radon measure µ defines a β − γ continuous linear op-
erator Tµ in the above manner. Hence integration establishes a Saks space
isomorphism

Mt(X ;E) ∼= (C∞(X), E).

Proof. We put G : E;γ and calculate:

(C∞(X), E) ∼= (C∞(X), S − lim
←−

F∈F(G)

F ′)

∼= S − lim
←−

F

(Cb(X), F ′)

∼= S − lim
←−

F

Mt(X,F
′)

∼= Mt(X,S − lim
←−

F

F ′)

∼= Mt(X,E).

Remark. The formal manipulations with projective limits used in this proof
are justified by the fact that the isomorphisms at each step are implemented
by intergration.

A less formal demonstration of the above result goes as follows: since T
maps bounded sets in C∞(X) into relatively compact subsets of (E, γ), then

T ′′ : C∞(X)′′ → E ′′

actually takes its values in E.
Noting that if A is a Borel set in X then its characterist function χA

defines, by intergration, an element of C∞(X)′′ = (M(X), || ||)′ we may define

µ(A) := T ′′(χA)

which is an E-valued measure.
By the continuity of T ′′ (with respect to the norm in C∞(X)′′ we can

deduce that

T ′′(X) =

∫

xdµ

for every bounded, Borel-measurable function on X and so in particular, for
x∞(X). The converse fact is easy.
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Corollar 21 If T and X are as above, then the following are equivalent:

1. T is β − || || continuous;

2. T is compact i.e. takes some β-neigbourhood of zero to a relatively
compact set in E;

3. the semi-variation ||µ|| of µ (with respect to the norm E) is tight i.e.
for each ǫ > 0 there exists a K ∈ K(S) so that for each A ∈ (X) with
A ⊆ X \K, ||µ||(A) < ǫ.

Proof. The equivalence of 1. and 2. follows from Proposition ? (which is
trivial in this case since B|| || is compact). The equivalence of 2. and 3. is
clear.

Using the above result, we can now easily obtain a result for general
operators with values in a locally convex space.

Proposition 75 Let E be a locally convex space, X a completely regular
space. Then any continuous, linear operator T : C∞(X) → E may be
represented by integration with respect to a Radonmeasure µ from (X) into
(E ′′, (E ′′, E ′)). In fact, µ takes its values in the (E ′′, E ′)-closure of T (B(C∞(X))).

If T maps the unit ball of C∞(X) into a relatively weakly compact subset
of E, then µ takes its values in E (actually in T (B,C∞(X)) and is a Radon
measure with respet tot the original topology in E.

Proof. For the first assertion, letB be the (E ′′, E ′)-closure of T (B(C∞(X)))
in E ′′ and let F be the Saks space spanned by B in E ′′ with || ||B as norm
and (E ′′, E ′) as auxiliary topology. Then this is a Saks space with compact
unit ball and the result follows immediately from 74.

In the second case, thake B := T (B(C∞(X))), the closure now being
taken in E, and define the Saks space F to be (EB, || ||B, (E,E ′)). Then T
is represented by an F -valued Radon measure µ (i.e. Radon with respect to
(E,E ′)).

The fact that µ is Radon with respect to the topology of E follows from
the following simple Lemma.

Lemma 16 Let E be a locally convex space and suppose that

µ : (X)→ E

is a finitely additive measure so that for each f in E ′, f ◦ µ is a Radon
measure. Then µ is also Radon.
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We have shown that weakly compact operators on C∞(X) have represen-
tations as integrals. An example of an operator which does not have such a
representation is the identity operator on c0. Here the representing measure
is the measure

A→ χA

on the power set of N. In a certain sense this is the typical example as
the following generalistion of a result of Pelczyński shows. In the proof we
use Grothendiek’s characterisation of weakly compact subset of Mt(X) and
Rosenthal’s Lemma on sequences of measures.

Proposition 76 Let (E, τ) be a quasi-compelete locally convex space T :
C∞(X)→ E a β-continuous linear operator. If T does not map the unit balls
of C∞(X) into a relatively weakly compact subset of E, there is a sequence
(xn) of funcitons C∞(X) with mutually disjoint supports so that if j is the
mapping (ln) →

∑

lnxn from cn into C∞(X) and A denotes the β-closed
span of {xn} in C∞(X), then in the following diagram

file=bild15.eps,height=3cm,width=7cm

j and T |A are isomorphisms. More informally, T fixes a subspace of (C∞(X), β)
which is isomorphic to c0.

Consequently, if E fails to contain a copy of c0 then every continuous
linear operator T : C∞(X) → E takes the unit ball into a relatively weakly
compact subset of E.
Proof. If T fails to satisfy the given condition, then T ′ : E ′ →Mt(X) takes
some equicontinuous set H in E ′ to a subset of Mt(X) which is bounded
but not relatively (M(X),M(X)′)-compact. Then, by the above mentioned
characterisation of weakly compact sets in Mt(X) there exists a sequence
(fn) in H , a sequence (Un) of disjoint open sets in S and an ǫ > 0 so that
|T ′(fn)(Un)| > ǫ(n ∈ N) i.e. |fn ◦ µ(Un)| > ǫ (where µ represets T ). By
ROSENTHAL’s Lemma we may suppose that

|fn ◦ µ|(∪m6=nUm) < ǫ/2 (n ∈ N).

Now choose a sequence (xn) in C
∞(S) so that |xn| ≤ χUn and

|fn ◦ T (xn)| =
∣

∣

∣

∣

∫

S

xnd(fn ◦ µ)
∣

∣

∣

∣

> ǫ,

which is possible since fn ◦ µ is a Radon-measure. Then j, as defined in teh
statement of the theorem, is clearly a well-defined, continuous injection. We
claim that

||T ◦ j((ln))||H ≥ ǫ/2||(ln)||c0
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for each (ln) ∈ c0, where || ||H denotes the seminorm of unit form convergence
on the equicontinuous set H . Indeed for any (ln) ∈ c0 and any k ∈ N,

||T ◦ j((ln))||H ≥ |T ◦ j((ln)), fk| =
∣

∣

∣

∣

∣

∫

S

∑

n∈N

lnxnd(fk ◦ µ)
∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∫

S

lkxkd(fk ◦ µ)
∣

∣

∣

∣

− ||(ln)||c0|fk ◦ µ|(∪l 6=kUl)

≥ |lk|ǫ− ||(ln)||c0 · ǫ/2.

Taking the supremum over k on the right-hand side we get the required
estimate.

This shows that (T ◦j)−1 is well-defined and continuous on T (j(c0)), from
which it follows that j as an operator from c0 to j(c0) and T , as an operator
from j(c0) to T (j(c0)) are isomorphisms (by the following trivial Lemma).

Lemma 17 Let X, Y, Z be topological spaces, f : X → Y and g : Y → Z
continuous, surjective mappings such that g ◦ f is an isomorphism. Then f
and g are also isomorphisms.

Proof. The injecticity of g ◦ f imlies that of g and f that f−1 and g−1 are
well-defined. But as g−1 = f ◦ (g ◦ f) and f−1 = (g ◦ f)−1 ◦ g it is clear that
f and g are continuous.
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